Health Research

Health Research Library

Search

Glycemic Response and Type II Diabetes

Displaying 11 - 20 of 28

Glycemic Responses to Sweetened Dried and Raw Cranberries in Humans with Type 2 Diabetes

Posted
Authors
Wilson T, Luebke JL, Morcomb EF, Carrell EJ, Leveranz MC, Kobs L, Schmidt TP, Limburg PJ, Vorsa N, Singh AP
Journal
J Food Sci 75(8):H218-23
Abstract

This study assessed the metabolic response to sweetened dried cranberries (SDC), raw cranberries (RC), and white bread (WB) in humans with type 2 diabetes. Development of palatable cranberry preparations associated with lower glycemic responses may be useful for improving fruit consumption and glycemic control among those with diabetes. In this trial, type 2 diabetics (n= 13) received WB (57 g, 160 cal, 1 g fiber), RC (55 g, 21 cal, 1 g fiber), SDC (40 g, 138 cal, 2.1 g fiber), and SDC containing less sugar (SDC-LS, 40 g, 113 cal, 1.8 g fiber + 10 g polydextrose). Plasma glucose (mmol/L) peaked significantly at 60 min for WB, and at 30 min for RC, SDC, and SDC-LS at 9.6 ± 0.4, 7.0 ± 0.4, 9.6 ± 0.5, and 8.7 ± 0.5, respectively, WB remained significantly elevated from the other treatments at 120 min. Plasma insulin (pmol/mL) peaked at 60 min for WB and SDC and at 30 min for RC and SDC-LS at 157 ± 15, 142 ± 27, 61 ± 8, and 97 ± 11, respectively. Plasma insulin for SDC-LS was significantly lower at 60 min than either WB or SDC. Insulin area under the curve (AUC) values for RC and SDC-LS were both significantly lower than WB or SDC. Phenolic content of SDC and SDC-LS was determined following extraction with 80% acetone prior to high-performance liquid chromatography (HPLC) and electronspray ionization-mass spectrometry (ESI-MS) and found to be rich in 5-caffeoylquinic cid, quercetin-3-galactoside, and quercetin-3-galactoside, and the proanthocyanidin dimer epicatechin. In conclusion, SDC-LS was associated with a favorable glycemic and insulinemic response in type 2 diabetics. Practical Application: This study compares phenolic content and glycemic responses among different cranberry products. The study seeks to expand the palatable and portable healthy food choices for persons with type 2 diabetes. The novel use of polydextrose as a bulking agent making possible a reduction in caloric content and potential glycemic response is also characterized in this study.

Influence of Polyphenols from Lingonberry, Cranberry, and Red Grape on In Vitro Digestibility of Rice.

Posted
Authors
Quek R, Henry CJ
Journal
Int J Food Sci Nutr 66(4):378-82
Abstract

Dietary polyphenols are abundant antioxidants in the human diet and are associated with lower rates of diabetes and cardiovascular disease. This study aims to determine the effects of cooking white rice (WR) added with lingonberry (WRLB), cranberry (WRCB), and red grape (WRRG) on in vitro digestibility. There was significantly lower level of glucose release for WRRG compared with WR (p0.05). Increasing concentrations of red grape polyphenol decreased digestibility of white rice (p

A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice

Posted
Authors
Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A
Journal
Gut 64(6):872-883.
Abstract

Objective: The increasing prevalence of obesity and type 2 diabetes (T2D) demonstrates the failure of conventional treatments to curb these diseases. The gut microbiota has been put forward as a key player in the pathophysiology of diet-induced T2D. Importantly, cranberry (Vaccinium macrocarpon Aiton) is associated with a number of beneficial health effects. We aimed to investigate the metabolic impact of a cranberry extract (CE) on high fat/high sucrose (HFHS)-fed mice and to determine whether its consequent antidiabetic effects are related to modulations in the gut microbiota. Design C57BL/6J mice were fed either a chow or a HFHS diet. HFHS-fed mice were gavaged daily either with vehicle (water) or CE (200 mg/kg) for 8 weeks. The composition of the gut microbiota was assessed by analysing 16S rRNA gene sequences with 454 pyrosequencing. Results: CE treatment was found to reduce HFHS-induced weight gain and visceral obesity. CE treatment also decreased liver weight and triglyceride accumulation in association with blunted hepatic oxidative stress and inflammation. CE administration improved insulin sensitivity, as revealed by improved insulin tolerance, lower homeostasis model assessment of insulin resistance and decreased glucose-induced hyperinsulinaemia during an oral glucose tolerance test. CE treatment was found to lower intestinal triglyceride content and to alleviate intestinal inflammation and oxidative stress. Interestingly, CE treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in our metagenomic samples. Conclusions: CE exerts beneficial metabolic effects through improving HFHS diet-induced features of the metabolic syndrome, which is associated with a proportional increase in Akkermansia spp. population.

A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice.

Posted
Authors
Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A
Journal
Gut pii: gutjnl-2014-307142
Abstract

OBJECTIVE: The increasing prevalence of obesity and type 2 diabetes (T2D) demonstrates the failure of conventional treatments to curb these diseases. The gut microbiota has been put forward as a key player in the pathophysiology of
diet-induced T2D. Importantly, cranberry (Vaccinium macrocarpon Aiton) is associated with a number of beneficial health effects. We aimed to investigate the metabolic impact of a cranberry extract (CE) on high fat/high sucrose (HFHS)-fed mice and to determine whether its consequent antidiabetic effects are related to modulations in the gut microbiota.
DESIGN: C57BL/6J mice were fed either a chow or a HFHS diet. HFHS-fed mice were gavaged daily either with vehicle (water) or CE (200 mg/kg) for 8 weeks. The composition of the gut microbiota was assessed by analysing 16S rRNA gene
sequences with 454 pyrosequencing.
RESULTS: CE treatment was found to reduce HFHS-induced weight gain and visceral obesity. CE treatment also decreased liver weight and triglyceride accumulation in association with blunted hepatic oxidative stress and inflammation. CE
administration improved insulin sensitivity, as revealed by improved insulin tolerance, lower homeostasis model assessment of insulin resistance and decreased glucose-induced hyperinsulinaemia during an oral glucose tolerance test. CE treatment was found to lower intestinal triglyceride content and to alleviate intestinal inflammation and oxidative stress. Interestingly, CE treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in
our metagenomic samples.
CONCLUSIONS: CE exerts beneficial metabolic effects through improving HFHS
diet-induced features of the metabolic syndrome, which is associated with a
proportional increase in Akkermansia spp. population.

Effects of cranberry powder on biomarkers of oxidative stress and glucose control in db/db mice.

Posted
Authors
Kim MJ, Chung JY, Kim JH, Kwak HK
Journal
Nutr Res Pract 7(6):430-8
Abstract

Increased oxidative stress in obese diabetes may have causal effects on diabetic complications, including dyslipidemia. Lipopolysccharides (LPS) along with an atherogenic diet have been found to increase oxidative stress and insulin resistance. Cranberry has been recognized as having beneficial effects on diseases related to oxidative stress. Therefore, we employed obese diabetic animals treated with an atherogenic diet and LPS, with the aim of examining the effects of cranberry powder (CP) on diabetic related metabolic conditions, including lipid profiles, serum insulin and glucose, and biomarkers of oxidative stress. Forty C57BL/KsJ-db/db mice were divided into the following five groups: normal diet + saline, atherogenic diet + saline, atherogenic diet + LPS, atherogenic diet + 5% CP + LPS, and atherogenic diet + 10% CP + LPS. Consumption of an atherogenic diet resulted in elevation of serum total cholesterol and atherogenic index (AI) and reduction of high density lipoprotein (HDL)-cholesterol. However, with 10% CP, the increase in mean HDL-cholesterol level was close to that of the group with a normal diet, whereas AI was maintained at a higher level than that of the group with a normal diet. LPS induced elevated serum insulin level was lowered by greater than 60% with CP (P 0.05). Mean activity of liver cytosolic glutathione peroxidase was significantly increased by LPS injection, however it was reduced back to the value without LPS when the diet was fortified with 10% CP (P 0.05). Overall results suggest that fortification of the atherogenic diet with CP may have potential health benefits for obese diabetes with high oxidative stress, by modulation of physical conditions, including some biomarkers of oxidative stress.

Berries reduce postprandial insulin responses to wheat and rye breads in healthy women

Posted
Authors
Torronen R. Kolehmainen M. Sarkkinen E. Poutanen K. Mykkanen H. Niskanen L.
Journal
J Nutr 143(4):430-6
Abstract

<p>Starch in white wheat bread (WB) induces high postprandial glucose and insulin responses. For rye bread (RB), the glucose response is similar, whereas the insulin response is lower. In vitro studies suggest that polyphenol-rich berries may reduce digestion and absorption of starch and thereby suppress postprandial glycemia, but the evidence in humans is limited. We investigated the effects of berries consumed with WB or RB on postprandial glucose and insulin responses. Healthy females (n = 13-20) participated in 3 randomized, controlled, crossover, 2-h meal studies. They consumed WB or RB, both equal to 50 g available starch, with 150 g whole-berry puree or the same amount of bread without berries as reference. In study 1, WB was served with strawberries, bilberries, or lingonberries and in study 2 with raspberries, cloudberries, or chokeberries. In study 3, WB or RB was served with a mixture of berries consisting of equal amounts of strawberries, bilberries, cranberries, and blackcurrants. Strawberries, bilberries, lingonberries, and chokeberries consumed with WB and the berry mixture consumed with WB or RB significantly reduced the postprandial insulin response. Only strawberries (36%) and the berry mixture (with WB, 38%; with RB, 19%) significantly improved the glycemic profile of the breads. These results suggest than when WB is consumed with berries, less insulin is needed for maintenance of normal or slightly improved postprandial glucose metabolism. The lower insulin response to RB compared with WB can also be further reduced by berries.</p>

Inhibition of -amylase and glucoamylase by tannins extracted from cocoa, pomegranates, cranberries, and grapes

Posted
Authors
Barrett A, Ndou T, Hughey CA, Straut C, Howell A, Dai Z, Kaletunc G
Journal
J Agric Food Chem 61(7):1477-86
Abstract

Proanthocyanidins and ellagitannins, referred to as "tannins", exist in many plant sources. These compounds interact with proteins due to their numerous hydroxyl groups, which are suitable for hydrophobic associations. It was hypothesized that tannins could bind to the digestive enzymes -amylase and glucoamylase, thereby inhibiting starch hydrolysis. Slowed starch digestion can theoretically increase satiety by modulating glucose "spiking" and depletion that occurs after carbohydrate-rich meals. Tannins were isolated from extracts of pomegranate, cranberry, grape, and cocoa and these isolates tested for effectiveness to inhibit the activity of -amylase and glucoamylase in vitro. The compositions of the isolates were confirmed by NMR and LC/MS analysis, and tannin-protein interactions were investigated using relevant enzyme assays and differential scanning calorimetry (DSC). The results demonstrated inhibition of each enzyme by each tannin, but with variation in magnitude. In general, larger and more complex tannins, such as those in pomegranate and cranberry, more effectively inhibited the enzymes than did less polymerized cocoa tannins. Interaction of the tannins with the enzymes was confirmed through calorimetric measurements of changes in enzyme thermal stability.

Reduced-energy cranberry juice increases folic acid and adiponectin and reduces homocysteine and oxidative stress in patients with the metabolic syndrome.

Posted
Authors
Simão TN, Lozovoy MA, Simão AN, Oliveira SR, Venturini D, Morimoto HK, Miglioranza LH, Dichi I
Journal
Br J Nutr DOI: 10.1017/S0007114513001207
Abstract

The metabolic syndrome (MetS) comprises pathological conditions that include insulin resistance, arterial hypertension, visceral adiposity and dyslipidaemia, which favour the development of CVD. Some reports have shown that cranberry ingestion reduces cardiovascular risk factors. However, few studies have evaluated the effect of this fruit in subjects with the MetS. The objective of the present study was to assess the effect of reduced-energy cranberry juice consumption on metabolic and inflammatory biomarkers in patients with the MetS, and to verify the effects of cranberry juice concomitantly on homocysteine and adiponectin levels in patients with the MetS. For this purpose, fifty-six individuals with the MetS were selected and divided into two groups: control group (n 36) and cranberry-treated group (n 20). After consuming reduced-energy cranberry juice (0·7 litres/d) containing 0·4 mg folic acid for 60 d, the cranberry-treated group showed an increase in adiponectin (P= 0·010) and folic acid (P= 0·033) and a decrease in homocysteine (P

Postprandial glucose, insulin and glucagon-like peptide 1 responses to sucrose ingested with berries in healthy subjects

Posted
Authors
Torronen R, Sarkkinen E, Niskanen T, Tapola N, Kilpi K, Niskanen L
Abstract

Berries are often consumed with sucrose. They are also rich sources of polyphenols which may modulate glycaemia after carbohydrate ingestion. The present study investigated the postprandial glucose, insulin and glucagon-like peptide 1 (GLP-1) responses to sucrose ingested with berries, in comparison with a similar sucrose load without berries. A total of twelve healthy subjects were recruited to a randomised, single-blind, placebo-controlled crossover study. They participated in two meal tests on separate days. The berry meal was a puree (150 g) made of bilberries, blackcurrants, cranberries and strawberries with 35 g sucrose. The control meal included the same amount of sucrose and available carbohydrates in water. Fingertip capillary and venous blood samples were taken at baseline and at 15, 30, 45, 60, 90 and 120 min after starting to eat the meal. Glucose, insulin and GLP-1 concentrations were determined from the venous samples, and glucose also from the capillary samples. Compared to the control meal, ingestion of the berry meal resulted in lower capillary and venous plasma glucose and serum insulin concentrations at 15 min (P = 0.021, P

The effects of cranberry juice on serum glucose, apoB, apoA-I, Lp (a), and Paraoxonase-1 activity in type 2 diabetic male patients

Posted
Authors
Shidfar F,Heydari I, Hajimiresmaiel SJ, Hosseini S, Shidfar S, Amiri F
Journal
J Res Med Sci 17(6):Epub
Abstract

Background: Type 2 diabetic patients are faced with a higher risk of dyslipidemia and cardiovascular disorders. This study was undertaken to assess the effect of consumption of 1 cup cranberry juice by type 2 diabetic patients on serum paraoxonase-1 (PON-1) activity, apoA-1, apoB, glucose, and Lp(a). Materials and Methods: In a double-blind randomized clinical trial, 58 type 2 diabetic male patients were randomly divided to receive 1 cup cranberry juice (CJ) or placebo drink daily for 12 weeks. Fasting blood were obtained at beginning and at the end of study (12th week). Serum glucose and PON-1 activity were measured by enzymatic and colorimetric methods, respectively. ApoB, apoA-I, and Lp(a) were determined immunoturbidimetrically. The data were analyzed by SPSS version 16. Results: There were significant decrease in serum glucose and apoB (P>0.05 and P>0.01, respectively) and significant increase in serum apoA-1 and PON-1 activity (P>0.05 and P<0.01, respectively) at the end of study in CJ group compared with control group. In CJ group at the end of study, there were significant decrease in serum glucose and apoB (P<0.01 and P<0.01, respectively) and significant increase in serum apo A-1 and PON-1 activity (P<0.01 and P<0.01, respectively) compared with initial values. In CJ group, there was no significant change in Lp(a) at the end of study compared with initial values and also compared with control group. Conclusion: 1 cup CJ for 12 weeks is effective in reducing serum glucose and apoB and increasing apoA-1 and PON-1 activity, so may have favorite effects on reducing CVD risk factors in type 2 diabetic male patients.