Health Research

Health Research Library

Search

Glycemic Response and Type II Diabetes: Animal

Displaying 1 - 7 of 7

Lowering fasting blood glucose with non‐dialyzable material of cranberry extract is dependent on host genetic background, sex and diet.

Posted
Authors
Amer‐Sarsour, Fatima, Rana Tarabeih, Itzhak Ofek, and Fuad A. Iraqi.
Journal
Anim Models Exp Med. 2023;6:196–210
Abstract

Background: Type 2 diabetes (T2D) is a polygenic metabolic disease, characterized by high fasting blood glucose (FBG). The ability of cranberry (CRN) fruit to regulate glycemia in T2D patients is well known. Here, a cohort of 13 lines of the genetically diverse Collaborative Cross (CC) mouse model was assessed for the effect of non- dialyzable material (NDM) of cranberry extract in lowering fasting blood glucose. Methods: Eight-week-old mice were maintained on either a standard chow diet (control group) or a high-fat diet (HFD) for 12 weeks, followed by injections of intraperitoneal (IP) NDM (50 mg/kg) per mouse, three times a week for the next 6 weeks. Absolute FBG (mg/dl) was measured bi-weekly and percentage changes in FBG (%FBG) between weeks 0 and 12 were calculated. Results: Statistical analysis showed a significant decrease in FBG between weeks 0 and 12 in male and female mice maintained on CHD. However, a non-significant in-crease in FBG values was observed in male and female mice maintained on HFD during the same period. Following administration of NDM during the following 6 weeks, the results show a variation in significant levels of FBG lowering between lines, male and female mice and under the different diets. Conclusion: The results suggest that the efficacy of NDM treatment in lowering FGB depends on host genetic background (pharmacogenetics), sex of the mouse (pharmacosex), and diet (pharmacodiet). All these results support the need for follow-up research to better understand and implement a personalized medicine approach/utilization of NDM for reducing FBG.

 

A Polyphenol-Rich Cranberry Extract Reverses Insulin Resistance and Hepatic Steatosis Independently of Body Weight Loss.

Posted
Authors
Anhe FF; Nachbar RT; Varin TV; Vilela V; Dudonne S; Pilon G; Fournier M; Lecours MA; Desjardins Y; Roy D; Levy E; Marette A.
Journal
Molecular Metabolism. 6(12):1563-1573
Abstract

OBJECTIVE: Previous studies have reported that polyphenol-rich extracts from various sources can prevent obesity and associated gastro-hepatic and metabolic disorders in diet-induced obese (DIO) mice. However, whether such extracts can reverse obesity-linked metabolic alterations remains unknown. In the present study, we aimed to investigate the potential of a polyphenol-rich extract from cranberry (CE) to reverse obesity and associated metabolic disorders in DIO-mice. METHODS: Mice were pre-fed either a Chow or a High Fat-High Sucrose (HFHS) diet for 13 weeks to induce obesity and then treated either with CE (200mg/kg, Chow+CE, HFHS+CE) or vehicle (Chow, HFHS) for 8 additional weeks. RESULTS: CE did not reverse weight gain or fat mass accretion in Chow- or HFHS-fed mice. However, HFHS+CE fully reversed hepatic steatosis and this was linked to upregulation of genes involved in lipid catabolism (e.g., PPARalpha) and downregulation of several pro-inflammatory genes (eg, COX2, TNFalpha) in the liver. These findings were associated with improved glucose tolerance and normalization of insulin sensitivity in HFHS+CE mice. The gut microbiota of HFHS+CE mice was characterized by lower Firmicutes to Bacteroidetes ratio and a drastic expansion of Akkermansia muciniphila and, to a lesser extent, of Barnesiella spp, as compared to HFHS controls. CONCLUSIONS: Taken together, our findings demonstrate that CE, without impacting body weight or adiposity, can fully reverse HFHS diet-induced insulin resistance and hepatic steatosis while triggering A. muciniphila blooming in the gut microbiota, thus underscoring the gut-liver axis as a primary target of cranberry polyphenols.

Triggering Akkermansia with dietary polyphenols: A new weapon to combat the metabolic syndrome?

Posted
Authors
Anhe FF; Pilon G; Roy D; Desjardins Y; Levy E; Marette A
Journal
Gut Microbes. 7(2):146-53
Abstract

The gut and its bacterial colonizers are now well characterized as key players in whole-body metabolism, opening new avenues of research and generating great expectation for new treatments against obesity and its cardiometabolic complications. As diet is the main environmental factor affecting the gut microbiota, it has been suggested that fruits and vegetables, whose consumption is strongly associated with a healthy lifestyle, may carry phytochemicals that could help maintain intestinal homeostasis and metabolic health. We recently demonstrated that oral administration of a cranberry extract rich in polyphenols prevented diet-induced obesity and several detrimental features of the metabolic syndrome in association with a remarkable increase in the abundance of the mucin-degrading bacterium Akkermansia in the gut microbiota of mice. This addendum provides an extended discussion in light of recent discoveries suggesting a mechanistic link between polyphenols and Akkermansia, also contemplating how this unique microorganism may be exploited to fight the metabolic syndrome.

A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice

Posted
Authors
Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A
Journal
Gut 64(6):872-883.
Abstract

Objective: The increasing prevalence of obesity and type 2 diabetes (T2D) demonstrates the failure of conventional treatments to curb these diseases. The gut microbiota has been put forward as a key player in the pathophysiology of diet-induced T2D. Importantly, cranberry (Vaccinium macrocarpon Aiton) is associated with a number of beneficial health effects. We aimed to investigate the metabolic impact of a cranberry extract (CE) on high fat/high sucrose (HFHS)-fed mice and to determine whether its consequent antidiabetic effects are related to modulations in the gut microbiota. Design C57BL/6J mice were fed either a chow or a HFHS diet. HFHS-fed mice were gavaged daily either with vehicle (water) or CE (200 mg/kg) for 8 weeks. The composition of the gut microbiota was assessed by analysing 16S rRNA gene sequences with 454 pyrosequencing. Results: CE treatment was found to reduce HFHS-induced weight gain and visceral obesity. CE treatment also decreased liver weight and triglyceride accumulation in association with blunted hepatic oxidative stress and inflammation. CE administration improved insulin sensitivity, as revealed by improved insulin tolerance, lower homeostasis model assessment of insulin resistance and decreased glucose-induced hyperinsulinaemia during an oral glucose tolerance test. CE treatment was found to lower intestinal triglyceride content and to alleviate intestinal inflammation and oxidative stress. Interestingly, CE treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in our metagenomic samples. Conclusions: CE exerts beneficial metabolic effects through improving HFHS diet-induced features of the metabolic syndrome, which is associated with a proportional increase in Akkermansia spp. population.

A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice.

Posted
Authors
Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A
Journal
Gut pii: gutjnl-2014-307142
Abstract

OBJECTIVE: The increasing prevalence of obesity and type 2 diabetes (T2D) demonstrates the failure of conventional treatments to curb these diseases. The gut microbiota has been put forward as a key player in the pathophysiology of
diet-induced T2D. Importantly, cranberry (Vaccinium macrocarpon Aiton) is associated with a number of beneficial health effects. We aimed to investigate the metabolic impact of a cranberry extract (CE) on high fat/high sucrose (HFHS)-fed mice and to determine whether its consequent antidiabetic effects are related to modulations in the gut microbiota.
DESIGN: C57BL/6J mice were fed either a chow or a HFHS diet. HFHS-fed mice were gavaged daily either with vehicle (water) or CE (200 mg/kg) for 8 weeks. The composition of the gut microbiota was assessed by analysing 16S rRNA gene
sequences with 454 pyrosequencing.
RESULTS: CE treatment was found to reduce HFHS-induced weight gain and visceral obesity. CE treatment also decreased liver weight and triglyceride accumulation in association with blunted hepatic oxidative stress and inflammation. CE
administration improved insulin sensitivity, as revealed by improved insulin tolerance, lower homeostasis model assessment of insulin resistance and decreased glucose-induced hyperinsulinaemia during an oral glucose tolerance test. CE treatment was found to lower intestinal triglyceride content and to alleviate intestinal inflammation and oxidative stress. Interestingly, CE treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in
our metagenomic samples.
CONCLUSIONS: CE exerts beneficial metabolic effects through improving HFHS
diet-induced features of the metabolic syndrome, which is associated with a
proportional increase in Akkermansia spp. population.

Effects of cranberry powder on biomarkers of oxidative stress and glucose control in db/db mice.

Posted
Authors
Kim MJ, Chung JY, Kim JH, Kwak HK
Journal
Nutr Res Pract 7(6):430-8
Abstract

Increased oxidative stress in obese diabetes may have causal effects on diabetic complications, including dyslipidemia. Lipopolysccharides (LPS) along with an atherogenic diet have been found to increase oxidative stress and insulin resistance. Cranberry has been recognized as having beneficial effects on diseases related to oxidative stress. Therefore, we employed obese diabetic animals treated with an atherogenic diet and LPS, with the aim of examining the effects of cranberry powder (CP) on diabetic related metabolic conditions, including lipid profiles, serum insulin and glucose, and biomarkers of oxidative stress. Forty C57BL/KsJ-db/db mice were divided into the following five groups: normal diet + saline, atherogenic diet + saline, atherogenic diet + LPS, atherogenic diet + 5% CP + LPS, and atherogenic diet + 10% CP + LPS. Consumption of an atherogenic diet resulted in elevation of serum total cholesterol and atherogenic index (AI) and reduction of high density lipoprotein (HDL)-cholesterol. However, with 10% CP, the increase in mean HDL-cholesterol level was close to that of the group with a normal diet, whereas AI was maintained at a higher level than that of the group with a normal diet. LPS induced elevated serum insulin level was lowered by greater than 60% with CP (P 0.05), and mean serum glucose level was reduced by approximately 19% with 5% CP (P > 0.05). Mean activity of liver cytosolic glutathione peroxidase was significantly increased by LPS injection, however it was reduced back to the value without LPS when the diet was fortified with 10% CP (P 0.05). In groups with CP, a reduction in mean levels of serum protein carbonyl tended to occur in a dose dependent manner. Particularly with 10% CP, a reduction of approximately 89% was observed (P > 0.05). Overall results suggest that fortification of the atherogenic diet with CP may have potential health benefits for obese diabetes with high oxidative stress, by modulation of physical conditions, including some biomarkers of oxidative stress.

Effects of long-term cranberry supplementation on endocrine pancreas in aging rats

Posted
Authors
Zhu M, Hu J, Perez E, Phillips D, Kim W, Ghaedian R, Napora JK, Zou S
Journal
J Gerontol A Biol Sci Med Sci 66(11):1139-51
Abstract

The effects of long-term cranberry consumption on age-related changes in endocrine pancreas are not fully understood. Here we treated male Fischer 344 rats with either 2% whole cranberry powder supplemented or normal rodent chow from 6 to 22 month old. Both groups displayed an age-related decline in basal plasma insulin concentrations, but this age-related decline was delayed by cranberry. Cranberry supplementation led to increased β-cell glucose responsiveness during the oral glucose tolerance test. Portal insulin concentration was 7.6-fold higher in rats fed cranberry, coupled with improved β-cell function. However, insulin resistance values were similar in both groups. Total β-cell mass and expression of pancreatic and duodenal homeobox 1 and insulin within islets were significantly enhanced in rats fed cranberry relative to controls. Furthermore, cranberry increased insulin release of an insulin-producing β-cell line, revealing its insulinotropic effect. These findings suggest that cranberry is of particular benefit to β-cell function in normal aging rats.