Health Research

Health Research Library


Characterization of PACs profile and bioactivity of a novel nutraceutical combining cranberry extracts with different PAC-A oligomers, D-mannose and ascorbic acid: an in vivo/ex vivo evaluation of dual mechanism of action on intestinal barrier and urinary

Faggian, M., Bernabe, G., Valente, M., Francescato, S., Baratto, G., Brun, P., Castagliuolo, I., Dall'Acqua, S., Peron, G
Food Research International 2021. 149.

In this paper, an A-type procyanidin (PAC)-rich cranberry extract (CB-B) was obtained mixing different extracts and was formulated with D-mannose and ascorbic acid to obtain a novel nutraceutical (URO-F) aimed at preventing non-complicated bacterial urinary tract infections (UTIs). To assess the bioactivity of CB-B and URO-F, urine samples collected from six healthy volunteers undergoing a 2-days oral consumption of 0.41 g/day of CB-B or 10 g/day of URO-F (corresponding to 72 mg/day of PACs) were tested against uropathogenic E. coli (UPEC) incubated on urinary bladder epithelial cells (T24). Urinary markers of CB-B and URO-F consumption were assessed in the same urine output by UPLC-QTOF-based untargeted metabolomics approach. CB-B and URO-F were evaluated for their ability to promote the intestinal barrier function by restoring the trans-epithelial electrical resistance (TEER) and to inhibit the production of inflammatory cytokines in intestinal epithelial Caco2 cells. CB-B was characterized by a high PAC-A content (70% of total PACs) and a broad distribution of different PACs polymers (dimers-hexamers). Urine from subjects consuming CB-B and URO-F showed a significant effect in reducing the adhesion of UPEC to urothelium in vitro, supporting their efficacy as anti-adhesive agents after oral intake. CB-B inhibited the release of cytokine IL-8, and both products were effective in restoring the TEER. Overall, our results show that the beneficial effects of CB-B and URO-F on UTIs are not only due to the antiadhesive activity of cranberry on UPEC in the urothelium, but also to a multi-target activity involving anti-inflammatory and permeability-enhancing effects on intestinal epithelium.