Health Research

Health Research Library


Modulation of strawberry/cranberry phenolic compounds glucuronidation by co-supplementation with onion: characterization of phenolic metabolites in rat plasma using an optimized micro SPE-UHPLC-MS/MS method.

Dudonne S, Dube P, Pilon G, Marette A, Jacques H, Weisnagel J, Desjardins Y
J Agric Food Chem 62(14):3244-56

Plant phenolic compounds are suggested to exert pharmacological activities in regards to obesity and type-2 diabetes, but their mode of action is poorly understood due to a lack of information about their bioavailability. This work aimed to study the bioavailability of GlucoPhenol phenolic compounds, a strawberry-cranberry extracts blend, by characterizing plasma phenolic profile in obese rats. A comparison was performed by co-supplementation with an onion extract. Using an optimized micro SPE-UHPLC-MS/MS method, 21 phenolic metabolites were characterized, mostly conjugated metabolites and microbial degradation products of the native phenolic compounds. Their kinetic profiles revealed either an intestinal or hepatic formation. Among identified metabolites, isorhamnetin glucuronide sulfate was found in greater amount in plasma. Three glucuronidated conjugates of strawberry-cranberry phenolic compounds, p-hydroxybenzoic acid glucuronide, catechins glucuronide, and methyl catechins glucuronide were found in higher quantities when GlucoPhenol was ingested together with onion extract (+252%, +279%, and +118% respectively), suggesting a possible induction of glucuronidation processes by quercetin. This work allowed the characterization of actual phenolic metabolites generated in vivo following a phenolic intake, the analysis of their kinetics and suggested a possible synergistic activity of phenolic compounds for improving bioavailability.