Health Research

Health Research Library

Search

Glycemic Response and Type II Diabetes: Human

Displaying 11 - 16 of 16

The effects of cranberry juice on serum glucose, apoB, apoA-I, Lp (a), and Paraoxonase-1 activity in type 2 diabetic male patients

Posted
Authors
Shidfar F,Heydari I, Hajimiresmaiel SJ, Hosseini S, Shidfar S, Amiri F
Journal
J Res Med Sci 17(6):Epub
Abstract

Background: Type 2 diabetic patients are faced with a higher risk of dyslipidemia and cardiovascular disorders. This study was undertaken to assess the effect of consumption of 1 cup cranberry juice by type 2 diabetic patients on serum paraoxonase-1 (PON-1) activity, apoA-1, apoB, glucose, and Lp(a). Materials and Methods: In a double-blind randomized clinical trial, 58 type 2 diabetic male patients were randomly divided to receive 1 cup cranberry juice (CJ) or placebo drink daily for 12 weeks. Fasting blood were obtained at beginning and at the end of study (12th week). Serum glucose and PON-1 activity were measured by enzymatic and colorimetric methods, respectively. ApoB, apoA-I, and Lp(a) were determined immunoturbidimetrically. The data were analyzed by SPSS version 16. Results: There were significant decrease in serum glucose and apoB (P>0.05 and P>0.01, respectively) and significant increase in serum apoA-1 and PON-1 activity (P>0.05 and P<0.01, respectively) at the end of study in CJ group compared with control group. In CJ group at the end of study, there were significant decrease in serum glucose and apoB (P<0.01 and P<0.01, respectively) and significant increase in serum apo A-1 and PON-1 activity (P<0.01 and P<0.01, respectively) compared with initial values. In CJ group, there was no significant change in Lp(a) at the end of study compared with initial values and also compared with control group. Conclusion: 1 cup CJ for 12 weeks is effective in reducing serum glucose and apoB and increasing apoA-1 and PON-1 activity, so may have favorite effects on reducing CVD risk factors in type 2 diabetic male patients.

Berries modify the postprandial plasma glucose response to sucrose in healthy subjects

Posted
Authors
Torronen R, Sarkkinen E, Tapola N, Hautaniemi E, Kilpi K and Niskanen L
Journal
Br J Nutr 103(8):1094-7
Abstract

Sucrose increases postprandial blood glucose concentrations, and diets with a high glycaemic response may be associated with increased risk of obesity, type 2 diabetes and CVD. Previous studies have suggested that polyphenols may influence carbohydrate digestion and absorption and thereby postprandial glycaemia. Berries are rich sources of various polyphenols and berry products are typically consumed with sucrose. We investigated the glycaemic effect of a berry puree made of bilberries, blackcurrants, cranberries and strawberries, and sweetened with sucrose, in comparison to sucrose with adjustment of available carbohydrates. A total of twelve healthy subjects (eleven women and one man, aged 25–69 years) with normal fasting plasma glucose ingested 150 g of the berry pure´e with 35 g sucrose or a control sucrose load in a randomised, controlled cross-over design. After consumption of the berry meal, the plasma glucose concentrations were significantly lower at 15 and 30 min (P<0·05, P<0·01, respectively) and significantly higher at 150 min (P<0·05) compared with the control meal. The peak glucose concentration was reached at 45 min after the berry meal and at 30 min after the control meal. The peak increase from the baseline was 1·0 mmol/l smaller (P=0·002) after ingestion of the berry meal. There was no statistically significant difference in the 3 h area under the glucose response curve. These results show that berries rich in polyphenols decrease the postprandial glucose response of sucrose in healthy subjects. The delayed and attenuated glycaemic response indicates reduced digestion and/or absorption of sucrose from the berry meal.

Can cranberry supplementation benefit adults with type 2 diabetes?

Posted
Authors
Chambers BK, Camire ME
Journal
Diabetes Care 26(9):2695-6
Abstract

"Adults controlling their type 2 diabetes through diet alone were recruited from the Bangor, Maine, community. Fourteen subjects (aged 57.9 [+ or -] 10.6 years, 6 women, 8 men, duration of diabetes 6.0 [+ or -] 8.5 years) were randomized to the cranberry group; 13 subjects (aged 52.6 [+ or -] 13.7 years, 6 women, 7 men, duration of diabetes 4.1 [+ or -] 4.9 years) were assigned to the placebo group. Subjects consumed six capsules filled with either cranberry juice concentrate powder or a placebo daily for 12 weeks. Six capsules were equivalent to a 240-ml serving of cranberry juice cocktail. The artificially colored placebo mimicked the cranberry powder in all respects but flavonoid content. Subjects were asked to discontinue use of dietary supplements, but no other diet and lifestyle changes were made during the study.

More than one-half of the subjects had good control of blood glucose levels (7.0 mmol/l) at the beginning of the study. No differences were found between the treatment groups in fasting serum glucose, Hb[A.sub.1c], fructosamine, triglyceride, or HDL or LDL levels after 6 and 12 weeks. Placebo subjects had higher insulin values throughout the study (160 [+ or -] 167 vs. 86 [+ or -] 51 pmol/l at week 12, P 0.05). Different effects might be seen in subjects with poor glucose control, individuals with type 1 diabetes, or people who use medications to control their type 2 diabetes. "

Effect of cranberry extracts on lipid profiles in subjects with Type 2 diabetes

Posted
Authors
Lee IT, Chan YC, Lin CW, Lee WJ, Sheu WH
Journal
Diabet Med 25(12):1473-7
Abstract

AIM: To examine the effect of cranberry ingestion on lipid profiles in Type 2 diabetic patients taking oral glucose-lowering drugs.

METHODS: Thirty Type 2 diabetic subjects (16 males and 14 females; mean age 65 +/- 1 years) who were taking oral glucose-lowering medication regularly were enrolled in this randomized, placebo-controlled, double-blind study. Changes in lipid profiles, oxidized low-density lipoprotein (ox-LDL), glycaemic control, components of the metabolic syndrome, C-reactive protein (CRP) and urinary albumin excretion (UAE) were assessed after cranberry or placebo treatment for 12 weeks.

RESULTS: Low-density lipoprotein (LDL) cholesterol decreased significantly in the cranberry group (from 3.3 +/- 0.2 to 2.9 +/- 0.2 mmol/l, P = 0.005) and the decrease was significantly greater than that in the placebo group (-0.4 +/- 0.1 vs. 0.2 +/- 0.1 mmol/l, P 0.001). Total cholesterol and total : high-density lipoprotein (HDL) cholesterol ratio also decreased significantly (P = 0.020 and 0.044, respectively) in the cranberry group and the reductions were significantly different from those in the placebo group (P 0.001 and P = 0.032, respectively). However, ox-LDL levels did not change significantly in response to cranberry consumption. Neither fasting glucose nor glycated haemoglobin improved in either group. Changes in components of the metabolic syndrome, UAE and CRP were not significantly different between groups.

CONCLUSIONS: Cranberry supplements are effective in reducing atherosclerotic cholesterol profiles, including LDL cholesterol and total cholesterol levels, as well as total : HDL cholesterol ratio, and have a neutral effect on glycaemic control in Type 2 diabetic subjects taking oral glucose-lowering agents.

Favorable glycemic response of type 2 diabetics to low-calorie cranberry juice

Posted
Authors
Wilson T, Meyers SL, Singh AP, Limburg PJ and Vorsa N
Journal
J Food Sci 73(9):H241-5
Abstract

Fruit and vegetable intake is typically low for type 2 diabetics, possibly due to a perceived adverse effect on glycemic control. Cranberry juice (CBJ) may represent an attractive means for increasing fruit intake and simultaneously affording positive health benefits. This single cross-over design compared metabolic responses of type 2 diabetics (n= 12) to unsweetened low-calorie CBJ (LCCBJ; 19 Cal/240 mL), carbohydrate sweetened normal calorie CBJ (NCCBJ; 120 Cal/240 mL), isocaloric low-calorie sugar water control (LCC), and isocaloric normal calorie sugar water control (NCC) interventions. CBJ flavonols and anthocyanins, and proanthocyanidins were quantified with HPLC, LC-MS, and MALDI-TOF that includes an original characterization of several large oligomeric proanthocyanidins. Blood glucose peaked 30 min postingestion after NCCBJ and NCC at 13.3 +/- 0.5 and 12.8 +/- 0.9 (mmol/L), and these responses were significantly greater than the LCCBJ and LCC peaks of 8.1 +/- 0.5 and 8.7 +/- 0.5, respectively. Differences in glycemic response remained significant 60 min, but not 120 min postingestion. Plasma insulin values 60 min postingestion for NCCBJ and NCC interventions were 140 +/- 19 and 151 +/- 18 (pmol/L), respectively, and significantly greater than the LCCBJ and LCC values of 56 +/- 10 and 54 +/- 10; differences were not significant 120 min postingestion. Metabolic responses within the 2 high and 2 low-calorie beverages were virtually identical; however, exposure to potentially beneficial nutrients was greater with CBJ. Relative to conventionally sweetened preparation, LCCBJ provides a favorable metabolic response and should be useful for promoting increased fruit consumption among type 2 diabetics or others wishing to limit carbohydrate intake.

Human glycemic response and phenolic content of unsweetened cranberry juice

Posted
Authors
Wilson T, Singh AP, Vorsa N, Goettl CD, Kittleson KM, Roe CM, Kastello GM and Ragsdale FR
Journal
J Med Food 11(1):46-54
Abstract

This cross-sectional study determined the phenolic composition of an over-the-counter cranberry juice (CBJ) with high-performance liquid chromatography and examined the effects of low- and normal-calorie CBJ formulations on the postprandial glycemic response in healthy humans. The CBJ used in this study contained seven phenolic acids, with 3- and 5-caffeoylquinic acid being the primary components, and 15 flavonol glycosides, with myricetin-3-galactoside and quercetin-3-galactoside being the most prevalent. CBJ proanthocyanidins consisted of three different tetramers and a heptamer, which were confirmed with matrix-assisted laser desorption ionization-time of flight-mass spectrometry analysis. Participants received one of the following six treatments: nothing (no water/beverage), water (480 mL), unsweetened low-calorie CBJ (38 Cal/480 mL), normal-calorie CBJ (280 Cal/480 mL), isocaloric normal calorie (high fructose corn syrup [HFCS]), or isocaloric low-calorie beverages. No significant differences in postprandial blood glucose or insulin were observed in the groups receiving nothing, water, or low-calorie treatments. In contrast, the ingestion of normal-calorie CBJ and normal-calorie control beverage resulted in significantly higher blood glucose concentrations 30 minutes postprandially, although the differences were no longer significant after 180 minutes. Plasma insulin of normal-calorie CBJ and control (HFCS) recipients was significantly higher 60 minutes postprandially, but not significantly different 120 minutes postprandially. CBJ ingestion did not affect heart rate or blood pressure. This study suggests that the consumption of a low-calorie CBJ rich in previously uncharacterized trimer and heptamer proanthocyanidins is associated with a favorable glycemic response and may be beneficial for persons with impaired glucose tolerance.