Health Research

Health Research Library

Search

Miscellaneous: In-Vitro

Displaying 61 - 70 of 84

Adhesion of Asaia Bogorensis to Glass and Polystyrene in the Presence of Cranberry Juice.

Posted
Authors
Antolak H, Kregiel D, Czyzowska A
Journal
J Food Prot 78(6):1186-90
Abstract

The aim of the study was to evaluate the adhesion abilities of the acetic acid bacterium Asaia bogorensis to glass and polystyrene in the presence of American cranberry (Vaccinium macrocarpon) juice. The strain of A. bogorensis used was isolated from spoiled commercial fruit-flavored drinking water. The cranberry juice was analyzed for polyphenols, organic acids, and carbohydrates using high-performance liquid chromatography and liquid chromatography-mass spectrometry techniques. The adhesive abilities of bacterial cells in culture medium supplemented with cranberry juice were determined using luminometry and microscopy. The viability of adhered and planktonic bacterial cells was determined by the plate count method, and the relative adhesion coefficient was calculated. This strain of A. bogorensis was characterized by strong adhesion properties that were dependent upon the type of surface. The highest level of cell adhesion was found on the polystyrene. However, in the presence of 10% cranberry juice, attachment of bacterial cells was three times lower. Chemical analysis of juice revealed the presence of sugars, organic acids, and anthocyanins, which were identified as galactosides, glucosides, and arabinosides of cyanidin and peonidin. A-type proanthocyanidins responsible for the antiadhesion properties of V. macrocarpon also were detected.

Antioxidant Activity and Polyphenol Content of Cranberries (Vaccinium Macrocarpon).

Posted
Authors
Kalin P, Gulcin I, Goren AC
Journal
Rec Nat Prod 9(4):496-502
Abstract

Cranberries (Vaccinium macrocarpon) contain many bioactive compounds and have some biological activities and beneficial health properties. In the study, antioxidant effects of lyophilized aqueous extract of cranberry (LAEC) and quantity of some its polyphenolic compounds were determined. For this purpose, we performed DPPH., DMPD.+, ABTS.+ and O2.- radicals scavenging activities, inhibition of lipid peroxidation activity by thiocyanate method, Cu2+ and Fe3+ reducing abilities, FRAP assay and Fe2+ binding activity. At the 10 micro g/mL concentration, LAEC inhibited 52.4% lipid peroxidation produced by linoleic acid emulsion. Also, alpha -tocopherol, BHA, trolox, and BHT had 52.5, 89.9, 93.1 and 94.9% inhibition value at 30 micro g/mL concentration, respectively. Quantitative amounts of some phenolic compounds in LAEC were investigated by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). p-Hydroxy benzoic acid was found as the most abundant phenolic compound (55 mg/kg extract) in LAEC.

Cranberry Flavonoids Modulate Cariogenic Properties of Mixed-Species Biofilm through Exopolysaccharides-Matrix Disruption

Posted
Authors
Kim D, Hwang G, Liu Y, Wang Y, Singh AP, Vorsa N, Koo H
Journal
PLoS ONE 10(12):e0145844
Abstract

The exopolysaccharides (EPS) produced by Streptococcus mutans-derived glucosyltransferases (Gtfs) are essential virulence factors associated with the initiation of cariogenic biofilms. EPS forms the core of the biofilm matrix-scaffold, providing mechanical stability while facilitating the creation of localized acidic microenvironments. Cranberry flavonoids, such as A-type proanthocyanidins (PACs) and myricetin, have been shown to inhibit the activity of Gtfs and EPS-mediated bacterial adhesion without killing the organisms. Here, we investigated whether a combination of cranberry flavonoids disrupts EPS accumulation and S. mutans survival using a mixed-species biofilm model under cariogenic conditions. We also assessed the impact of cranberry flavonoids on mechanical stability and the in situ pH at the biofilm-apatite interface. Topical application of an optimized combination of PACs oligomers (100-300 muM) with myricetin (2 mM) twice daily was used to simulate treatment regimen experienced clinically. Treatments with cranberry flavonoids effectively reduced the insoluble EPS content (>80% reduction vs. vehicle-control; p0.001), while hindering S. mutans outgrowth within mixed-species biofilms. As a result, the 3D architecture of cranberry-treated biofilms was severely compromised, showing a defective EPS-matrix and failure to develop microcolonies on the saliva-coated hydroxyapatite (sHA) surface. Furthermore, topical applications of cranberry flavonoids significantly weaken the mechanical stability of the biofilms; nearly 90% of the biofilm was removed from sHA surface after exposure to a shear stress of 0.449 N/m2 (vs. 36% removal in vehicle-treated biofilms). Importantly, in situ pH measurements in cranberry-treated biofilms showed significantly higher pH values (5.2 +/- 0.1) at the biofilm-apatite interface vs. vehicle-treated biofilms (4.6 +/- 0.1). Altogether, the data provide important insights on how cranberry flavonoids treatments modulate virulence properties by disrupting the biochemical and ecological changes associated with cariogenic biofilm development, which could lead to new alternative or adjunctive antibiofilm/anticaries chemotherapeutic formulations.

Effect of Dried Powder Preparation Process on Polyphenolic Content and Antioxidant Capacity of Cranberry (Vaccinium macrocarpon L.).

Posted
Authors
Oszmianski J, Kolniak-Ostek J, Lachowicz S, Gorzelany J, Matlok N
Journal
Ind Crop Prod 77:658-665.
Abstract

The aim of the study was to evaluate the effect of the degree of fragmentation of cranberry fruit (Vaccinium macrocarpon L.) on the chemical composition and antioxidant activity of fruit powders and lyophilized pomace and juices. In analyzed samples, the basic chemical composition, total polyphenolics and antioxidant capacity were determined. Thirty-nine polyphenolic compounds, including 9 phenolic acids, 7 anthocyanins, 9 flavan-3-ols and 14 flavonols, were identified. Polyphenolic concentrations in pomaces ranged from 16 038.74 mg/100 g DW in samples from whole fruits to 17 802.52 mg/100 g DW in samples from crushed fruits. In juices, phenolic concentrations ranged from 873.12 mg/100 g DW in products from whole fruits to 3177.87 mg/100 g DW in products from crushed fruits. Antioxidant capacities were higher in dry products than in juices. The highest DPPH, ABTS and FRAP values were determined in dry pomaces obtained from crushed fruits (156.94, 275.22 and 71.47 micro mol/g DW, respectively).

Nano-Liquid Chromatography Coupled to Time-of-Flight Mass Spectrometry for Phenolic Profiling: a Case Study in Cranberry Syrups

Posted
Authors
Contreras Mdel M, Arraez-Roman D, Fernandez-Gutierrez A, Segura-Carretero A
Journal
Talanta 132:929-38
Abstract

A new method based on nano-liquid chromatography coupled to time-of-flight mass spectrometry (nano-LC-TOF-MS) using lock-mass calibration was developed to facilitate the accurate and routine characterization and quantification of phenolic compounds. Thus, it was applied to study cranberry syrups, in which, using negative ionization mode, a total of nine phenolic compounds were unequivocally identified using standards and 38 tentatively taking into account their retention time, accurate mass (errors5 ppm) data and isotope pattern, as well as literature. Among them, 13 compounds, belonging to flavonols and iridoids conjugated with phenolic acids, were reported for first time in cranberry or cranberry based-products. The analytical method was also validated using chlorogenic acid, p-coumaric acid, (+)-catechin, (-)-epicatechin, procyanidin A2, quercetin 3-O-glucoside, quercetin 3-O-rhamnoside, quercetin, and myricetin standards. In this way, the analytical method showed adequate linearity, with R(2) above 0.99, and acceptable values of intra- and inter-day repeatability of the retention time and peak area. The detection limits and quantification were between 1.0-15.6 ng mL(-1) and 2.0-62.5 ng mL(-1), respectively. The method can be extended to characterize phenolic compounds in other food and plant matrices, and as well biological samples.

Characterization and comparison of phenolic composition, antioxidant capacity and instrumental taste profile of juices from different botanical origins

Posted
Authors
Granato D, Karnopp AR, van Ruth SM
Journal
J Sci Food Agric 95(10):1997-2006
Abstract

BACKGROUND: The European Union registered a consumption of about 10.7 billion litres of juices in 2011 and a great part of this amount is imported from other countries, which makes the monitoring of their quality essential. This work was aimed at mapping the quality of various juices from different botanical origins from instrumental taste, chemical marker and antioxidant capacity perspectives. It also characterized the individual phenolic composition of juices previously classified according to their antioxidant activity and total phenolic material level.
RESULTS: Overall, by using correlation analysis and chemometrics (HCA and PCA), data showed that total phenolics, specifically gallic acid, p-coumaric acid, anthocyanins, flavanols and flavonols, are the main contributors to the antioxidant activity. Elderberry and pomegranate juices presented the highest phenolic content and antioxidant activity. On the other hand, orange, apple and cranberry juices had the lowest levels of total phenolics and flavonoids, DPPH and CUPRAC.
CONCLUSION: The use of chemometrics coupled to ANOVA seems to be a suitable approach to evaluate the quality of fruit juices from different botanical origins. Additionally, the instrumental taste profile correlated well with the chemical composition and antioxidant capacity, showing its potential application in assessing the functionality of juices.

Chemical characterization and chemo-protective activity of cranberry phenolic powders in a model cell culture. Response of the antioxidant defenses and regulation of signaling pathways

Posted
Journal
Food Res Int 71:68-82
Abstract

Oxidative stress and reactive oxygen species (ROS)-mediated cell damage are implicated in various chronic pathologies. Emerging studies show that polyphenols may act by increasing endogenous antioxidant defense potential. Cranberry has one of the highest polyphenol content among commonly consumed fruits. In this study, the hepato-protective activity of a cranberry juice (CJ) and cranberry extract (CE) powders against oxidative stress was screened using HepG2 cells, looking at ROS production, intracellular non-enzymatic and enzymatic antioxidant defenses by reduced glutathione concentration (GSH), glutathione peroxidase (GPx) and glutathione reductase (GR) activity and lipid peroxidation biomarker malondialdehyde (MDA). Involvement of major protein kinase signaling pathways was also evaluated. Both powders in basal conditions did not affect cell viability but decreased ROS production and increased GPx activity, conditions that may place the cells in favorable conditions against oxidative stress. Powder pre-treatment of HepG2 cells for 20 h significantly reduced cell damage induced by 400 micro M tert-butylhydroperoxide (t-BOOH) for 2 h. Both powders (5-50 micro g/ml) reduced t-BOOH-induced increase of MDA by 20% (CJ) and 25% (CE), and significantly reduced over-activated GPx and GR. CE, with a significantly higher amount of polyphenols than CJ, prevented a reduction in GSH and significantly reduced ROS production. CJ reversed the t-BOOH-induced increase in phospho-c-Jun N-terminal kinase. This study demonstrates that cranberry polyphenols may help protect liver cells against oxidative insult by modulating GSH concentration, ROS and MDA generation, antioxidant enzyme activity and cell signaling pathways.

Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes

Posted
Authors
Kowalska K, Olejnik A, Rychlik J, Grajek W
Journal
Food Chem 185:383-8
Abstract

It has previously been shown that lyophilized cranberries (LCB) decreased lipid accumulation in 3T3-L1 cells and inhibited preadipocyte differentiation by down-regulation of the expression of key transcription factors (PPARgamma, C/EBPalpha, SREBP1) of the adipogenesis pathway. To elucidate the molecular basis of anti-lipogenic activity of LCB, the expression of several genes involved in lipid metabolism, such as adipocyte fatty acid-binding protein (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), hormone sensitive lipase (HSL) and perilipin 1 (PLIN1), was examined in the present study. Additionally, the effects of LCB on adiponectin and leptin expression and protein secretion were also investigated. LCB reduced lipid accumulation during preadipocyte differentiation by down-regulation of the mRNA level of aP2, FAS, LPL, HSL and PLIN1. Moreover, LCB decreased leptin gene expression and increased adiponectin gene expression and protein secretion in a dose-dependent manner. Therefore cranberries could be considered as bioactive factors, which are effective in the inhibition of adipose tissue mass production.

Depolymerisation optimisation of cranberry procyanidins and transport of resultant oligomers on monolayers of human intestinal epithelial Caco-2 cells

Posted
Authors
Ou K, Gu L
Journal
Food Chem 167:45-51
Abstract

Procyanidins in cranberries are predominantly polymers (>85%). The objective of this study was to optimise the depolymerisation of polymers and to investigate the absorption of resultant oligomers on Caco-2 cell monolayers. Depolymerisation conditions were optimised using response surface methodology. Depolymerisation, with or without added epicatechin, yielded 644 mug and 202 mug of oligomers (monomer through tetramers) per mg of partially purified polymers (PP), respectively. Oligomers (yielded from both methods) were transported through Caco-2 cell monolayer despite absorption rates being low. With the aid of response surface methodology, the optimum depolymerisation conditions were determined to be 60degreeC, 0.1M HCl in methanol and 3h without added epicatechin. The predicted maximum yield was 364 mug oligomers per mg of PP. The optimum depolymerisation condition with added epicatechin shared the same temperature, acid concentration and reaction time, in addition to an epicatechin/PP mass ratio of 2.19. Its predicted maximum oligomer yield was 1,089 mug/mg. The predicted yields were verified by experimental data.

Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy with cathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts.

Posted
Authors
Lombardo Bedran TB, Palomari Spolidorio D, Grenier D
Journal
Arch Oral Biol 60(6):845-53
Abstract

OBJECTIVES: The human antimicrobial peptide cathelicidin (LL-37) possesses anti-inflammatory properties that may contribute to attenuating the inflammatory process associated with chronic periodontitis. Plant polyphenols, including those from cranberry and green tea, have been reported to reduce inflammatory cytokine secretion by host cells. In the present study, we hypothesized that A-type cranberry proanthocyanidins (AC-PACs) and green tea epigallocatechin-3-gallate (EGCG) act in synergy with LL-37 to reduce the secretion of inflammatory mediators by oral mucosal cells.
METHODS: A three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts treated with non-cytotoxic concentrations of AC-PACs (25 and 50 mug/ml), EGCG (1 and 5 mug/ml), and LL-37 (0.1 and 0.2 muM) individually and in combination (AC-PACs+LL-37 and EGCG+LL-37) were stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS). Multiplex ELISA assays were used to quantify the secretion of 54 host factors, including chemokines, cytokines, growth factors, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs).
RESULTS: LL-37, AC-PACs, and EGCG, individually or in combination, had no effect on the regulation of MMP and TIMP secretion but inhibited the secretion of several cytokines. AC-PACs and LL-37 acted in synergy to reduce the secretion of CXC-chemokine ligand 1 (GRO-alpha), granulocyte colony-stimulating factor (G-CSF), and interleukin-6 (IL-6), and had an additive effect on reducing the secretion of interleukin-8 (IL-8), interferon-gamma inducible protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) in response to LPS stimulation. EGCG and LL-37 acted in synergy to reduce the secretion of GRO-alpha, G-CSF, IL-6, IL-8, and IP-10, and had an additive effect on MCP-1 secretion.
CONCLUSION: The combination of LL-37 and natural polyphenols from cranberry and green tea acted in synergy to reduce the secretion of several cytokines by an LPS-stimulated 3D co-culture model of oral mucosal cells. Such combinations show promising results as potential adjunctive therapies for treating inflammatory periodontitis.Copyright © 2015 Elsevier Ltd. All rights reserved.