Health Research

Health Research Library

Search

Miscellaneous: In-Vitro

Displaying 11 - 20 of 79

Cranberry Extracts Promote Growth of Bacteroidaceae and Decrease Abundance of Enterobacteriaceae in A Guman Gut Simulator Model.

Posted
Authors
O'Connor, K. Morrissette, M. Strandwitz, P. Ghiglieri, M. Caboni, M. Liu HaiYan Khoo, C. D'Onofrio, A. Lewis, K.
Journal
PLoS ONE; 2019. 14(11):e0224836.
Abstract

The opportunistic pathogen Escherichia coli, a common member of the human gut microbiota belonging to the Enterobacteriaceae family, is the causative agent of the majority of urinary tract infections (UTIs). The gut microbiota serves as a reservoir for uropathogenic E. coli where they are shed in feces, colonize the periurethral area, and infect the urinary tract. Currently, front line treatment for UTIs consists of oral antibiotics, but the rise of antibiotic resistance is leading to higher rates of recurrence, and antibiotics cause collateral damage to other members of the gut microbiota. It is commonly believed that incorporation of the American cranberry, Vaccinium macrocarpon, into the diet is useful for reducing recurrence of UTIs. We hypothesized such a benefit might be explained by a prebiotic or antimicrobial effect on the gut microbiota. As such, we tested cranberry extracts and whole cranberry powder on a human gut microbiome-derived community in a gut simulator and found that cranberry components broadly modulate the microbiota by reducing the abundance of Enterobacteriaceae and increasing the abundance of Bacteroidaceae. To identify the specific compounds responsible for this, we tested a panel of compounds isolated from cranberries for activity against E. coli, and found that salicylate exhibited antimicrobial activity against both laboratory E. coli and human UTI E. coli isolates. In a gut simulator, salicylate reduced levels of Enterobacteriaceae and elevated Bacteroidaceae in a dose dependent manner.

Cranberry Proanthocyanidins Neutralize the Effects of Aggregatibacter actinomycetemcomitans Leukotoxin

Posted
Authors
Amel Ben Lagha, Amy Howell and Daniel Grenier
Journal
Toxins 2019, 11(11), 662; https://doi.org/10.3390/toxins11110662
Abstract

Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that has been strongly associated with localized aggressive periodontitis. The capacity of A. actinomycetemcomitans to produce a leukotoxin (LtxA) that activates pyroptosis in macrophages and induces the release of endogenous danger signals is thought to play a key role in the disease process. The aim of the present study was to investigate the effects of cranberry proanthocyanidins (PACs) on gene expression and cytotoxic activities of LtxA. We showed that cranberry PACs dose-dependently attenuate the expression of genes making up the leukotoxin operon, including ltxB and ltxC, in the two strains of A. actinomycetemcomitans tested. Cranberry PACs (≥62.5 µg/mL) protected macrophages against the cytotoxic effect of purified LtxA. Moreover, cranberry PACs reduced caspase-1 activation in LtxA-treated macrophages and consequently decreased the release of both IL-1β and IL-18, which are known as damage-associated molecular patterns (DAMPs) and contribute to the progression of periodontitis by increasing cell migration and osteoclastogenesis. In addition, cranberry PACs reduced the expression of genes encoding the P2X7 receptor and NALP3 (NACHT, LRR and PYD domains-containing protein 3), which play key roles in pore formation and cell death. Lastly, cranberry PACs blocked the binding of LtxA to macrophages and consequently reduced the LtxA-mediated cytotoxicity. In summary, the present study showed that cranberry PACs reduced LtxA gene expression in A. actinomycetemcomitans and neutralized the cytolytic and pro-inflammatory responses of human macrophages treated with LtxA. Given these properties, cranberry PACs may represent promising molecules for prevention and treatment of the aggressive form of periodontitis caused by A. actinomycetemcomitans.

The Effect of Cranberry Fruit Extract on Alpha -Synuclein Protein Expression using Immunostaining Techniques

Posted
Authors
Kumar, J. Sarvesh; Priya, V. Vishnu; Gayathri, R.
Journal
Drug Invention Today . Jun2019, Vol. 11 Issue 6, p1506-1508
Abstract

Abstract: Aim: The aim of the study was to identify the neuroprotective effect of cranberry fruit extract by reducing the release of this biomarker by immunostaining techniques. Objective: The present study is to find out the alpha-lipoic acid cranberry fruit extract on alpha-synuclein protein expression using immunostaining techniques. Materials and Methods: The neuroblastoma SH-SY5Y cells were cultured and treated with various concentrations of cranberry fruit extract and were incubated with primary antibody alpha-synuclein and the antigen-antibody activity was visualized under a light microscope, and the results were quantified using image analysis software. Results: The study infers that when cranberry extract is added to the neurotoxic cell lines, the antigen-antibody reaction is interfered and as the concentration of cranberry fruit extract increases the corresponding decrease in the expression of the alpha-synuclein protein can be seen. Conclusion: Cranberry fruit extract proves to effectively reduce the expression of alpha-synuclein protein in neurotoxic cell lines so further research must be conducted in this field to discover the useful effects of cranberry so that it can be used as a neuroprotective agent in medicines to treat neurodegenerative disorders.

Development of a Cranberry Standard for Quantification of Insoluble Cranberry (Vaccinium macrocarpon Ait.) Proanthocyanidins.

Posted
Authors
Gullickson ER; Krueger CG; Birmingham A; Maranan M; Reed JD.
Journal
Journal of Agricultural & Food Chemistry 10.1021/acs.jafc.9b03696 [doi]
Abstract

Cranberry proanthocyanidins (PACs) can be partitioned into soluble PACs, which are extracted with solvents, and insoluble PACs, which remain associated with fibers and proteins after extraction. Most research on cranberry products only quantifies soluble PACs because proper standards for quantifying insoluble PACs are lacking. In this study, we evaluated the ability of a cranberry PAC (c-PAC) standard, reflective of the structural heterogeneity of PACs found in cranberry fruit, to quantify insoluble PACs by the butanol-hydrochloric acid (BuOH-HCl) method. For the first time, a c-PAC standard enabled conversion of BuOH-HCl absorbance values (550 nm) to a weight (milligram) basis, allowing for quantification of insoluble PACs in cranberries. The use of the c-PAC reference standard for sequential analysis of soluble PACs by the method of 4-(dimethylamino)cinnamaldehyde and insoluble PACs by the method of BuOH-HCl provides analytical tools for the standardization of cranberry-based ingredients.

Evaluation of the Degree of Polymerization of the Proanthocyanidins in Cranberry by Molecular Sieving and Characterization of the Low Molecular Weight Fractions by UHPLC-Orbitrap Mass Spectrometry.

Posted
Authors
Gardana, C. Simonetti, P.
Journal
Molecules. 24(8):1504
Abstract

4-dimethylammino-cinnamaldehyde (DMAC) assays quantify total proanthocyanidins (PACs) but do not provide qualitative PAC molecular weight distribution information and cannot discriminate between A- and B-type PACs. We developed an efficient method for assessing PAC molecular weight distributions. The PACs from three commercial cranberry extracts (A1-A3) were fractionated by molecular sieves with cut-offs of 3, 10, 30, 50, and 100 kDa, and each fraction was analyzed by DMAC assays. A1, A2, and A3 contained 27%, 33%, and 15% PACs, respectively. Approximately 28 PACs, 20 flavonols, and 15 phenolic acids were identified by UHPLC-DAD-Orbitrap MS in A1 and A3, while A2 contained only flavan-3-ols. Epicatechin was the main monomer in A1 and A3, and catechin was the main in A2. Procyanidin A2 was the main dimer in A1 and A3, representing more than 85% of the total dimers, while it constituted approximately only 24% of A2. A1 and A3 contained quercetin, isorhamnetin, myricetin, and their glycosides, which were totally absent in A2. In A1 and A3 the PACs were mainly distributed in the fractions 30-3 and <3 kDa, while in A2 more than 70% were present in the fraction less than 3 kDa. Overall, obtained data strongly suggests that A2 is not cranberry-derived, or is adulterated with another source of PACs.

Antioxidant Properties and Phenolic Compounds of Vitamin C-Rich Juices.

Posted
Authors
Nowak, D. Goslinski, M. Wojtowicz, E. Przygonski, K.
Journal
Journal of Food Science. 83(8):2237-2246.
Abstract

Many studies have shown that bioactive compounds, for example, polyphenols, and so on can play an important role in reducing oxidative stress and protect against various diseases. The sources of these compounds in the human diet include mainly fruit and good quality fruit juices, which may contain polyphenols but also other phytochemicals such as vitamin C. The purpose of the study was to analyze the antioxidant properties of vitamin C-rich juices, which underwent mild processing. The content of total polyphenols (TP, FBBB), total flavonoids (TF), total anthocyanins (TA), and vitamin C as well as the antioxidant capacity (DPPH, ABTS) were evaluated in commercial fruit juices rich in vitamin C (acerola, gojiberry, sea buckthorn, wild rose, cranberry, Japanese quince). Moreover, phenolic acids and selected flavonoids were determined by HPLC methods. Among the examined fruit juices, acerola and wild rose juices contained the highest amounts of vitamin C and total polyphenols, and had the highest antioxidant capacity. Acerola owes its high antioxidant properties mainly to vitamin C, whereas the antioxidant capacity of wild rose is also attributed to its rich content of flavonoids and phenolic acids. Sea buckthorn juice and Japanese quince juice had a lower antioxidant capacity, yet higher than determined for gojiberry and cranberry juices. Total anthocyanins were the highest in cranberry juice. The results showed that the analyzed juices were a valuable source of natural antioxidants. Generally, vitamin C-rich juices are also good source of polyphenols. Vitamin C and polyphenols act synergistically and define the antioxidant properties of juices.

BIOACTIVE COMPONENTS OF VACCINIUM MACROCARPON AND ITS ANTIOXIDANT ACTIVITY: AN IN-VITRO STUDY

Posted
Authors
Krishnaeswari V, Manikandan S, Vijayakumar J
Journal
International Journal of Pharmaceutical Sciences and Research, DOI: 10.13040/IJPSR.0975-8232.10(1).438-44
Abstract

Cranberries (Vaccinium macrocarpon) contain many bioactive compounds and have some biological activities and beneficial health properties. This study aimed to screen phytochemicals of cranberry fruits from the different solvent, to estimate the total phenolic and flavonoid content of cranberry fruits and their antioxidant effect in-vitro by DPPH, superoxide and nitric oxide radical scavenging assay. Phytochemical screening of various extracts such as aqueous, ethanol, chloroform, acetone and petroleum ether of cranberry fruit extracts, revealed the presence of flavonoids, cardiac glycosides, phenols, coumarins, terpenoids, and betacyanin. The cranberry extracts were evaluated for phenol and flavonoid content with Gallic acid (GA) and Quercetin (Q) as standard. The optimum yield of phenol and flavonoid content were found in ethanol fruit extract 13.07 mg Gallic acid Equivalents (GAE)/g and 9.02 mg Quercetin Equivalents (QE)/g of cranberry. The cranberry extracts were evaluated for antioxidant activities by DPPH (1,1– diphenyl -2- picrylhydrazyl) radical scavenging assay. Among five different solvents used, maximum antioxidant activity was found in ethanolic fruit extract (81.4%) followed by others. The IC50 values of ethanolic cranberry extract in superoxide radical scavenging activity and Nitric oxide radical scavenging assay are 61.1 µg/ml and 54.7 µg/ml. The IC50 values showed a strong antioxidant activity of the extracts. The powerful antioxidant effect attributed to the greater amount of phenol and flavonoid compound in the ethanolic cranberry extract.

Comparative Evaluation of Grape Seed and Cranberry Extracts in Preventing Enamel Erosion: An Optical Emission Spectrometric Analysis.

Posted
Authors
Nandakumar M, Nasim I.
Journal
J Conserv Dent. 2018 Sep-Oct;21(5):516-520. doi: 10.4103/JCD.JCD_110_18.
Abstract

INTRODUCTION:Dental erosion is defined as the loss of tooth structure due to chemical process that does not involve bacteria. The management of such a condition calls for a comprehensive approach to identifying the cause and treating it.AIM:The aim of this study is to comparatively evaluate the role of grape seed extract (GSE) and cranberry extract (CE) in preventing dental erosion using optical emission spectrometry.MATERIALS AND METHODS:Prepared enamel specimens were subjected to the erosive challenge using HCl for 10 s, followed by immersion in experimental natural groups and control fluoride group for 30 s and artificial saliva for 60 min. This cycle was repeated three times. The amounts of calcium and phosphorous present in the acid solution after 1st, 2nd, and 3rd erosive challenges were determined for each group using induced coupled plasma-optical emission spectrometry.RESULTS:The cumulative calcium and phosphorous release after the 1st, 2nd, and 3rd erosive challenges were found to be the least in SnF2 group, followed by GSE group and then in CE group.CONCLUSION:The protective of GSE and CE was inferior to the gold standard control group of stannous fluoride role, against enamel erosion. GSE showed better remineralizing effect; however, there was no statistically significant difference between the two groups.

Some New Findings Regarding the Antiadhesive Activity of Cranberry Phenolic Compounds and Their Microbial-Derived Metabolites against Uropathogenic Bacteria.

Posted
Authors
González de Llano D, Liu H, Khoo C, Moreno-Arribas MV, Bartolomé B.
Journal
J Agric Food Chem. 2019 Feb 12. doi: 10.1021/acs.jafc.8b05625
Abstract

Findings concerning the antiadhesive activity of cranberry phenolic compounds and their microbial-derived metabolites against Gram-negative ( Escherichia coli ATCC 53503 and DSM 10791) and Gram-positive ( Enterococcus faecalis 04-1) bacteria in T24 cells are reported. A-Type procyanidins (A2 and cinnamtannin B-1) exhibited antiadhesive activity (at concentrations ≥250 μM), a feature that was not observed for B-type procyanidins (B2). The metabolites hippuric acid and α-hydroxyhippuric acid also showed effective results at concentrations ≥250 μM. With regard to conjugated metabolites, sulfation seemed to increase the antiadhesive activity of cranberry-derived metabolites as 3-(3,4-dihydroxyphenyl)propionic acid 3- O-sulfate presented active results, unlike its corresponding nonsulfated form. In contrast, methylation decreased antiadhesive activity as 3,4-dihydroxyphenylacetic acid was found to be active but not its corresponding methylated form (4-hydroxy-3-methoxyphenylacetic acid). As a whole, this work sustains the antiadhesive activity of cranberry-derived metabolites as one of the mechanisms involved in the beneficial effects of cranberries against urinary tract infections.

Advantages of a Validated UPLC-MS/MS Standard Addition Method for the Quantification of A-Type Dimeric and Trimeric Proanthocyanidins in Cranberry Extracts in Comparison with Well-Known Quantification Methods.

Posted
Authors
Dooren, I. van Foubert, K. Theunis, M. Naessens, T. Pieters, L. Apers, S.
Journal
Journal of Pharmaceutical and Biomedical Analysis;148:32-41.
Abstract

The berries of Vaccinium macrocarpon, cranberry, are widely used for the prevention of urinary tract infections. This species contains A-type proanthocyanidins (PACs), which intervene in the initial phase of the development of urinary tract infections by preventing the adherence of Escherichia coli by their P-type fimbriae to uroepithelial cells. Unfortunately, the existing clinical studies used different cranberry preparations, which were poorly standardized. Because of this, the results were hard to compare, which led sometimes to conflicting results. Currently, PACs are quantified using the rather non-specific spectrophotometric 4-dimethylaminocinnamaldehyde (DMAC) method. In addition, a normal phase HPTLC-densitometric method, a HPLC-UV method and three LC-MS/MS methods for quantification of procyanidin A2 were recently published. All these methods contain some shortcomings and errors. Hence, the development and validation of a fast and sensitive standard addition LC-MS/MS method for the simultaneous quantification of A-type dimers and trimers in a cranberry dry extract was carried out. A linear calibration model could be adopted for dimers and, after logarithmic transformation, for trimers. The maximal interday and interconcentration precision was found to be 4.86% and 4.28% for procyanidin A2, and 5.61% and 7.65% for trimeric PACs, which are all acceptable values for an analytical method using LC-MS/MS. In addition, twelve different cranberry extracts were analyzed by means of the newly validated method and other widely used methods. There appeared to be an enormous variation in dimeric and trimeric PAC content. Comparison of these results with LC-MS/MS analysis without standard addition showed the presence of matrix effects for some of the extracts and proved the necessity of standard addition. A comparison of the well-known and widely used DMAC method, the butanol-HCl assay and this newly developed LC-MS/MS method clearly indicated the need for a reliable method able to quantify A-type PACs, which are considered to be the pharmacologically active constituents of cranberry, since neither the DMAC or butanol-HCl assays are capable of distinguishing between A and B-type PACs and therefore cannot detect adulterations with, for example, extracts with a high B-type PAC content. Hence, the combination of the DMAC method or butanol-HCl assay with this more specific LC-MS/MS assay could overcome these shortcomings.