Health Research

Health Research Library

Search

Miscellaneous: In-Vitro

Displaying 31 - 40 of 79

Comparative Evaluation of Anti-Microbial Efficacy of Cranberry Extract and Chlorhexidine Mouthwash on Periodontal Pathogens: An In-vitro Study

Posted
Authors
Dandekar S, Deshpande N, Dave D
Journal
J. Periodont. Pract. DOI: http://dx.doi.org/10.20936/jpp/170102
Abstract

BACKGROUND: Chlorhexidine gluconate is considered as the gold standard among various anti-plaque agents. However, many local side effects have been reported on its long term use. Cranberry (Vaccinium macrocarpon) is rich in polyphenols, including flavonoids and proanthrocyanidins. Insufficient evidences are available to support antimicrobial property of Cranberry extract mouthwash in context to red, orange and green complexes of periodontal pathogens and even comparison of same with clinically used and accepted 0.2% Chlorhexidine. MATERIALS AND METHODS: Sterilised nutrient agar plates were inoculated with suspensions of P. gingivalis, T. forsythia, P. intermedia and A. actinomycetemcomitans (overnight cultures grown at 37° on nutrient agar). The strains were allowed to grow in strict anaerobic condition. 1, 5, 10 and 15 mg/ml Cranberry extract, 0.2% Chlorhexidine and distilled water were added into wells. Plates were then again incubated at 37° for 24 hours. Diameter of zones of inhibition of all the plates was measured using digital vernier callipers. The mean score of zones of inhibition was calculated. RESULTS: Results of the study showed that all four concentrations of Cranberry extract showed comparatively less significant antimicrobial property against the microorganisms, compared to 0.2% Chlorhexidine. CONCLUSION: This study showed that 1, 5, 10 and 15 mg/ml Cranberry extract does not have significant antimicrobial efficacy against periodontopathogens, compared to that of 0.2% Chlorhexidine.

Cranberry (Vaccinium macrocarpon ) Proanthocyanadin Complexes with Proteins Modulate the Macrophage Activation

Posted
Authors
Carballo S, Haas L, Krueger C, Reed JD
Journal
Food Funct DOI:10.1039/C7FO00688H
Abstract

In this work we characterize the interaction of cranberry (Vaccinium macrocarpon) proanthocyanidins (PAC) with bovine serum albumin (BSA) and hen egg-white lysozyme (HEL) and determine the effects of these complexes on macrophage activation and antigen presentation. We isolated PAC from cranberry and complexed the isolated PAC with BSA and HEL. The properties of the PAC-protein complexes were studied by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), gel electrophoresis and zeta-potential. The effects of PAC-BSA complexes on macrophage activation were studied in RAW 264.7 macrophage like cells after treatment with lipopolysaccharide (LPS). Fluorescent microscopy was used to study endocytosis of PAC-BSA complexes. The effects of PAC complexes on macrophage antigen presentation was studied in an in vitro model of HEL antigen presentation by mouse peritoneal mononuclear cells to a T-cell hybridoma. Mass spectra of PAC complexes with BSA and HEL differed from spectra of the proteins alone by the presence of broad shoulders on the singly and doubly charged protein peaks. Complexation with PAC altered the electrophoretic mobility shift assay in native agarose gel and the electrophoretic mobility (ζ-potential) values. These results indicate that the PAC-protein complexes are stable and alter protein structure without precipitating the protein. Fluorescent microscopy showed that RAW 264.7 macrophages endocytosed BSA and PAC-BSA complexes in discrete vesicles that surrounded the nucleus. Macrophages treated with increasing amounts of PAC-BSA complexes had significantly reduced COX-2 and iNOS expression in response to treatment with lipopolysaccharide (LPS) in comparison to controls. PAC-HEL complexes modulated antigen uptake, processing and presentation in murine peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a PAC-HEL complex had already reached maximum IL-2 expression. Cranberry PAC may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas. These results suggest that PAC-protein complexes modulate aspects of innate and acquired immune responses in macrophages.

Effects of Cranberry Extracts on Gene Expression in THP-1 Cells.

Posted
Authors
Hannon DB; Thompson JT; Khoo C; Juturu V; Vanden Heuvel JP.
Journal
Food Sciences and Nutrition. 5(1):148-159
Abstract

Cranberry contains high levels of nutrients and bioactive molecules that have health-promoting properties. The purpose of the present studies was to determine if cranberry extracts (CEs) contain phytochemicals that exert anti-inflammatory effects. The human monocytic cell line THP-1 was treated with two CEs (CE and 90MX) and subsequently challenged with Lipopolysaccharides (LPS). Tumor necrosis factor alpha (TNF alpha) expression was decreased in the CE-treated cells, indicative of an anti-inflammatory effect. Gene expression microarrays identified several immune-related genes that were responsive to CEs including interferon-induced protein with tetratricopeptide repeats 1 and 3 (IFIT 1 and 3), macrophage scavenger receptor 1 (MSR1) and colony-stimulating factor 2 (CSF2). In addition, in the CE-treated cells, metallothionein 1F and other metal-responsive genes were induced. Taken together, this data indicates that CEs contain bioactive components that have anti-inflammatory effects and may protect cells from oxidative damage.

Formulation of Thermoreversible Gel of Cranberry Juice Concentrate: Evaluation, Biocompatibility Studies and its Antimicrobial Activity Against Periodontal Pathogens.

Posted
Authors
Rajeshwari HR; Dhamecha D; Jagwani S; Patil D; Hegde S; Potdar R; Metgud R; Jalalpure S; Roy S; Jadhav K; Tiwari NK; Koduru S; Hugar S; Dodamani S.
Journal
Materials Science & Engineering. C, Materials for Biological Applications. 75:1506-1514
Abstract

The present work aims to investigate the efficacy of thermoreversible gel of cranberry juice concentrate (CJC) as local drug delivery for the treatment of periodontitis. CJC was initially tested for its antimicrobial activities like MIC, MBC, antiadhesion, antibiofilm and time kill assay against the panel of organisms (S. mutans (SM), E. faecalis (EF), A. actinomycetemcomitans (AA), P. gingivalis (PG), T. forsythia (TF)) responsible for periapical and periodontal infections. Antimicrobial activity of CJC showed MIC value of 50mg/ml and MBC value of 100mg/ml with desirable antiadhesion (83-90%) and antibiofilm activity (70-85%). CJC was evaluated for its biocompatibility using periodontal fibroblasts by cell based MTT assay and found to be nontoxic. Influence of CJC on periodontopathogen PG derived virulence factors (fimA and kgp) was studied using real time polymerase chain reaction (RT-PCR) technique wherein down regulation of selected genes demonstrated inhibitory effect against PG virulence factors. Thermoreversible gel of CJC was formulated by cold method using poloxamer 407 as thermosensitive polymer and carbopol 934 as mucoadhesive polymer and evaluated for its gelation temperature, viscosity, gel strength and mucoadhesive strength. Comparison of optimized thermoreversible gel of CJC (500mg/ml) with commercially available chlorhexidine gluconate gel (0.2%) using agar well diffusion demonstrated equal zone of inhibition against SM, EF, AA, PG & TF. Hence the formulated thermoreversible gel of CJC could serve as a novel herbal alternative to currently available periodontal treatment modalities.

Mechanism of Anti-rotavirus Synergistic Activity by Epigallocatechin Gallate and a Proanthocyanidin-Containing Nutraceutical.

Posted
Authors
Lipson SM; Karalis G; Karthikeyan L; Ozen FS; Gordon RE; Ponnala S; Bao J; Samarrai W; Wolfe E.
Journal
Food & Environmental Virology DOI 10.1007/s12560-017-9299-z
Abstract

Epigallocatechin gallate (EGCG) of green tea and the nutraceutical CystiCran-40 (containing 40% proanthocyanidins) of the cranberry plant have been associated with antiviral activity. The purpose of this work was to determine the mechanism of antiviral synergy between each compound. Coliphage T4II (phage T4) and the rotavirus strain SA-11(RTV) were used as model virus systems. Individual and combined flavonoids structural and molecular weight analyses were performed by NMR and HPCL/MS, respectively. A suboptimal concentration of EGCG or C-40 alone or in combination reduced phage infectivity by <=10%. Similarly, EGCG (30 micro g/ml) and C-40 (25 micro g/ml), respectively, reduced RTV titers by 3 and 13%. However, RTV titers were reduced by 32% (p < .05) with both flavonoids used in combination. RTV was not recognized in host cells by electron microscopy 24-h post-inoculation. NMR and HPLC/MS findings revealed significant structural and potential changes in molecular weight of the flavonoids in complex.

Multidimensional Comparative Analysis of Phenolic Compounds in Organic Juices with High Antioxidant Capacity.

Posted
Authors
Nowak D; Goslinski M; Szwengiel A.
Journal
Journal of the Science of Food & Agriculture. 97(8):2657-2663
Abstract

BACKGROUND: A diet rich in fruit, vegetables and juices is associated with health benefit and reduced risk of certain civilization diseases. Antioxidant properties depend mainly on the total content of polyphenols and their composition. The aim of this study was to perform a multidimensional comparative analysis of phenolic compounds of organic juices with high antioxidant capacity (chokeberry, elderberry, cranberry, pomegranate).RESULTS: All the analyzed juices were a rich source of phenolic compounds. Chokeberry juices had the highest total polyphenol content (up to 7900 mg GAE L-1 ). These juices as well as pomegranate juice were characterized by the highest antioxidant capacity (~5000 mg Trolox equivalents L-1 ). Other samples had lower total polyphenols content and total antioxidant capacity. Multidimensional analysis of the profiles of phenolic compounds showed that chokeberry juices differ from the other juices. Cranberry and pomegranate juices were similar to each other, and elderberry juice was closer to these samples than to chokeberry. The predominant polyphenols of chokeberry juices were anthocyanins (especially cyanidin-3-galactoside and cyanidin-3-arabinoside) and phenolic acids (chlorogenic and neochlorogenic acid). Elderberry juice was an exception by having flavonols (quercetin derivatives) as the principal compounds.CONCLUSION: Chokeberry juices were characterized by the highest antioxidant properties, which predispose them to further clinical research concerning the supporting cardiovascular disease prophylaxis

Photoprotective Effects of Cranberry Juice and its Various Fractions Against Blue Light-Induced Impairment in Human Retinal Pigment Epithelial Cells.

Posted
Authors
Chang CH, Chiu HF, Han YC, Chen IH, Shen YC, Venkatakrishnan K, Wang CK.
Journal
Pharm Biol. 55(1):571-580.
Abstract

CONTEXT:Cranberry has numerous biological activities, including antioxidation, anticancer, cardioprotection, as well as treatment of urinary tract infection (UTI), attributed to abundant phenolic contents.OBJECTIVE:The current study focused on the effect of cranberry juice (CJ) on blue light exposed human retinal pigment epithelial (ARPE-19) cells which mimic age-related macular degeneration (AMD).MATERIALS AND METHODS:Preliminary phytochemical and HPLC analysis, as well as total antioxidant capacity and scavenging activity of cranberry ethyl acetate extract and different CJ fractions (condensed tannins containing fraction), were evaluated. In cell line model, ARPE-19 were irradiated with blue light at 450 nm wavelength for 10 h (mimic AMD) and treated with different fractions of CJ extract at different doses (5-50 μg/mL) by assessing the cell viability or proliferation rate using MTT assay (repairing efficacy).RESULTS:Phytochemical and HPLC analysis reveals the presence of several phenolic compounds (flavonoids, proanthocyanidin, quercetin) in ethyl acetate extract and different fractions of CJ. However, the condensed tannin containing fraction of ethyl acetate extract of CJ displayed the greater (p < 0.05) scavenging activity especially at the dose of 1 mg/mL. Similarly, the condensed tannin containing fraction at 50 μg/mL presented better (p < 0.05) repairing ability (increased cell viability). Furthermore, the oligomeric condensed tannin containing fraction display the best (p < 0.05) repairing efficiency at 50 μg/mL.DISCUSSION AND CONCLUSION:In conclusion, this study distinctly proved that condensed tannin containing fraction of CJ probably exhibits better free radicals scavenging activity and thereby effectively protected the ARPE-19 cells and thus, hampers the progress of AMD.

Polyphenol Interactions Mitigate the Immunogenicity and Allergenicity of Gliadins.

Posted
Authors
Perot M; Lupi R; Guyot S; Delayre-Orthez C; Gadonna-Widehem P; Thebaudin JY; Bodinier M; Larre C.
Journal
Journal of Agricultural & Food Chemistry. 65(31):6442-6451
Abstract

Wheat allergy is an IgE-mediated disorder. Polyphenols, which are known to interact with certain proteins, could be used to reduce allergic reactions. This study screened several polyphenol sources for their ability to interact with gliadins, mask epitopes, and affect basophil degranulation. Polyphenol extracts from artichoke leaves, cranberries, apples, and green tea leaves were examined. Of these extracts, the first three formed insoluble complexes with gliadins. Only the cranberry and apple extracts masked epitopes in dot blot assays using anti-gliadin IgG and IgE antibodies from patients with wheat allergies. The cranberry and artichoke extracts limited cellular degranulation by reducing mouse anti-gliadin IgE recognition. In conclusion, the cranberry extract is the most effective polyphenol source at reducing the immunogenicity and allergenicity of wheat gliadins.

Protein-Bound Vaccinium Fruit Polyphenols Decrease IgE Binding to Peanut Allergens and RBL-2H3 Mast Cell Degranulation In Vitro.

Posted
Authors
Plundrich, N. J. Bansode, R. R. Foegeding, E. A. Williams, L. L. Lila, M. A.
Journal
Food and Function 8(4):1611-1621
Abstract

Peanut allergy is a worldwide health concern. In this study, the natural binding properties of plant-derived polyphenols to proteins was leveraged to produce stable protein-polyphenol complexes comprised of peanut proteins and cranberry (Vaccinium macrocarpon Ait.) or lowbush blueberry (Vaccinium angustifolium Ait.) pomace polyphenols. Protein-bound and free polyphenols were characterized and quantified by multistep extraction of polyphenols from protein-polyphenol complexes. Immunoblotting was performed with peanut-allergic plasma to determine peanut protein-specific IgE binding to unmodified peanut protein, or to peanut protein-polyphenol complexes. In an allergen model system, RBL-2H3 mast cells were exposed to peanut protein-polyphenol complexes and evaluated for their inhibitory activity on ionomycin-induced degranulation ( beta -hexosaminidase and histamine). Among the evaluated polyphenolic compounds from protein-polyphenol complex eluates, quercetin, - in aglycone or glycosidic form - was the main phytochemical identified to be covalently bound to peanut proteins. Peanut protein-bound cranberry and blueberry polyphenols significantly decreased IgE binding to peanut proteins at p<0.05 (38% and 31% decrease, respectively). Sensitized RBL-2H3 cells challenged with antigen and ionomycin in the presence of protein-cranberry and blueberry polyphenol complexes showed a significant (p<0.05) reduction in histamine and beta -hexosaminidase release (histamine: 65.5% and 65.8% decrease; beta -hexosaminidase: 60.7% and 45.4% decrease, respectively). The modification of peanut proteins with cranberry or blueberry polyphenols led to the formation of peanut protein-polyphenol complexes with significantly reduced allergenic potential. Future trials are warranted to investigate the immunomodulatory mechanisms of these protein-polyphenol complexes and the role of quercetin in their hypoallergenic potential.

Polyphenol Characterization, Anti-Oxidant, Anti-Proliferation and Anti-Tyrosinase Activity of Cranberry Pomace

Posted
Authors
Rupasinghe V, Neir SV, Parmar I
Journal
Functional Foods in Health and Disease 6(11):754-68
Abstract

Background: Cranberry pomace (CP), an underutilized by-product from juice processing, contains a wide range of biologically active compounds that can be recovered and used in a variety of applications in functional foods and nutraceuticals. Methods: In this study, analytical chemical techniques such as solvent extractions and characterization of extracts in respect with their phenolic content were performed using ultra-high performance liquid chromatography mass spectrometry (UPLC-MS) and spectrophotometry. Crude CP extract and its phenolic acids, flavonols, anthocyanins and proanthocyanidins–rich fractions were then evaluated for their anti-oxidant capacity, tyrosinase inhibitory activity, and anti-proliferation activity against hepatocellular carcinoma HepG2 cells. Results: On a dry weight basis, the different CP fractions contained seven major anthocyanins (0.1-125 mg/g), six major phenolic acids (0.8-31 mg/g), seven flavonols (1-126 mg/g) and five flavan-3-ols (0.1-12 mg/g). Fractions rich in flavonols exhibited the most potent antioxidant capacities with ferric ion reducing antioxidant power values of 1.8-1.9 mmole/g and 2, 2-diphenyl-1-picrylhydrazyl radical scavenging IC50 values of 15.1-15.2 mg/L respectively. On the other hand, fractions rich in phenolic acids and flavan-3-ol monomers demonstrated the most potent anti-tyrosinase activity (IC50=6.1-6.2 mg/L) and anti-proliferative activity (IC50=7.8-15.8 mg/L). Generally, all the fractions exhibited a dose-response relationship in the selected biological activity assays.Conclusion: This study suggests an effective utilization of CP to obtain biologically active fractions with potential to be used in functional foods and nutraceuticals designed for the prevention of chronic diseases associated with oxidative stress.