Health Research

Health Research Library

Search

Miscellaneous: In-Vitro

Displaying 41 - 50 of 84

Multidimensional Comparative Analysis of Phenolic Compounds in Organic Juices with High Antioxidant Capacity.

Posted
Authors
Nowak D; Goslinski M; Szwengiel A.
Journal
Journal of the Science of Food & Agriculture. 97(8):2657-2663
Abstract

BACKGROUND: A diet rich in fruit, vegetables and juices is associated with health benefit and reduced risk of certain civilization diseases. Antioxidant properties depend mainly on the total content of polyphenols and their composition. The aim of this study was to perform a multidimensional comparative analysis of phenolic compounds of organic juices with high antioxidant capacity (chokeberry, elderberry, cranberry, pomegranate).RESULTS: All the analyzed juices were a rich source of phenolic compounds. Chokeberry juices had the highest total polyphenol content (up to 7900 mg GAE L-1 ). These juices as well as pomegranate juice were characterized by the highest antioxidant capacity (~5000 mg Trolox equivalents L-1 ). Other samples had lower total polyphenols content and total antioxidant capacity. Multidimensional analysis of the profiles of phenolic compounds showed that chokeberry juices differ from the other juices. Cranberry and pomegranate juices were similar to each other, and elderberry juice was closer to these samples than to chokeberry. The predominant polyphenols of chokeberry juices were anthocyanins (especially cyanidin-3-galactoside and cyanidin-3-arabinoside) and phenolic acids (chlorogenic and neochlorogenic acid). Elderberry juice was an exception by having flavonols (quercetin derivatives) as the principal compounds.CONCLUSION: Chokeberry juices were characterized by the highest antioxidant properties, which predispose them to further clinical research concerning the supporting cardiovascular disease prophylaxis

Photoprotective Effects of Cranberry Juice and its Various Fractions Against Blue Light-Induced Impairment in Human Retinal Pigment Epithelial Cells.

Posted
Authors
Chang CH, Chiu HF, Han YC, Chen IH, Shen YC, Venkatakrishnan K, Wang CK.
Journal
Pharm Biol. 55(1):571-580.
Abstract

CONTEXT:Cranberry has numerous biological activities, including antioxidation, anticancer, cardioprotection, as well as treatment of urinary tract infection (UTI), attributed to abundant phenolic contents.OBJECTIVE:The current study focused on the effect of cranberry juice (CJ) on blue light exposed human retinal pigment epithelial (ARPE-19) cells which mimic age-related macular degeneration (AMD).MATERIALS AND METHODS:Preliminary phytochemical and HPLC analysis, as well as total antioxidant capacity and scavenging activity of cranberry ethyl acetate extract and different CJ fractions (condensed tannins containing fraction), were evaluated. In cell line model, ARPE-19 were irradiated with blue light at 450 nm wavelength for 10 h (mimic AMD) and treated with different fractions of CJ extract at different doses (5-50 μg/mL) by assessing the cell viability or proliferation rate using MTT assay (repairing efficacy).RESULTS:Phytochemical and HPLC analysis reveals the presence of several phenolic compounds (flavonoids, proanthocyanidin, quercetin) in ethyl acetate extract and different fractions of CJ. However, the condensed tannin containing fraction of ethyl acetate extract of CJ displayed the greater (p < 0.05) scavenging activity especially at the dose of 1 mg/mL. Similarly, the condensed tannin containing fraction at 50 μg/mL presented better (p < 0.05) repairing ability (increased cell viability). Furthermore, the oligomeric condensed tannin containing fraction display the best (p < 0.05) repairing efficiency at 50 μg/mL.DISCUSSION AND CONCLUSION:In conclusion, this study distinctly proved that condensed tannin containing fraction of CJ probably exhibits better free radicals scavenging activity and thereby effectively protected the ARPE-19 cells and thus, hampers the progress of AMD.

Polyphenol Interactions Mitigate the Immunogenicity and Allergenicity of Gliadins.

Posted
Authors
Perot M; Lupi R; Guyot S; Delayre-Orthez C; Gadonna-Widehem P; Thebaudin JY; Bodinier M; Larre C.
Journal
Journal of Agricultural & Food Chemistry. 65(31):6442-6451
Abstract

Wheat allergy is an IgE-mediated disorder. Polyphenols, which are known to interact with certain proteins, could be used to reduce allergic reactions. This study screened several polyphenol sources for their ability to interact with gliadins, mask epitopes, and affect basophil degranulation. Polyphenol extracts from artichoke leaves, cranberries, apples, and green tea leaves were examined. Of these extracts, the first three formed insoluble complexes with gliadins. Only the cranberry and apple extracts masked epitopes in dot blot assays using anti-gliadin IgG and IgE antibodies from patients with wheat allergies. The cranberry and artichoke extracts limited cellular degranulation by reducing mouse anti-gliadin IgE recognition. In conclusion, the cranberry extract is the most effective polyphenol source at reducing the immunogenicity and allergenicity of wheat gliadins.

Protein-Bound Vaccinium Fruit Polyphenols Decrease IgE Binding to Peanut Allergens and RBL-2H3 Mast Cell Degranulation In Vitro.

Posted
Authors
Plundrich, N. J. Bansode, R. R. Foegeding, E. A. Williams, L. L. Lila, M. A.
Journal
Food and Function 8(4):1611-1621
Abstract

Peanut allergy is a worldwide health concern. In this study, the natural binding properties of plant-derived polyphenols to proteins was leveraged to produce stable protein-polyphenol complexes comprised of peanut proteins and cranberry (Vaccinium macrocarpon Ait.) or lowbush blueberry (Vaccinium angustifolium Ait.) pomace polyphenols. Protein-bound and free polyphenols were characterized and quantified by multistep extraction of polyphenols from protein-polyphenol complexes. Immunoblotting was performed with peanut-allergic plasma to determine peanut protein-specific IgE binding to unmodified peanut protein, or to peanut protein-polyphenol complexes. In an allergen model system, RBL-2H3 mast cells were exposed to peanut protein-polyphenol complexes and evaluated for their inhibitory activity on ionomycin-induced degranulation ( beta -hexosaminidase and histamine). Among the evaluated polyphenolic compounds from protein-polyphenol complex eluates, quercetin, - in aglycone or glycosidic form - was the main phytochemical identified to be covalently bound to peanut proteins. Peanut protein-bound cranberry and blueberry polyphenols significantly decreased IgE binding to peanut proteins at p<0.05 (38% and 31% decrease, respectively). Sensitized RBL-2H3 cells challenged with antigen and ionomycin in the presence of protein-cranberry and blueberry polyphenol complexes showed a significant (p<0.05) reduction in histamine and beta -hexosaminidase release (histamine: 65.5% and 65.8% decrease; beta -hexosaminidase: 60.7% and 45.4% decrease, respectively). The modification of peanut proteins with cranberry or blueberry polyphenols led to the formation of peanut protein-polyphenol complexes with significantly reduced allergenic potential. Future trials are warranted to investigate the immunomodulatory mechanisms of these protein-polyphenol complexes and the role of quercetin in their hypoallergenic potential.

Polyphenol Characterization, Anti-Oxidant, Anti-Proliferation and Anti-Tyrosinase Activity of Cranberry Pomace

Posted
Authors
Rupasinghe V, Neir SV, Parmar I
Journal
Functional Foods in Health and Disease 6(11):754-68
Abstract

Background: Cranberry pomace (CP), an underutilized by-product from juice processing, contains a wide range of biologically active compounds that can be recovered and used in a variety of applications in functional foods and nutraceuticals. Methods: In this study, analytical chemical techniques such as solvent extractions and characterization of extracts in respect with their phenolic content were performed using ultra-high performance liquid chromatography mass spectrometry (UPLC-MS) and spectrophotometry. Crude CP extract and its phenolic acids, flavonols, anthocyanins and proanthocyanidins–rich fractions were then evaluated for their anti-oxidant capacity, tyrosinase inhibitory activity, and anti-proliferation activity against hepatocellular carcinoma HepG2 cells. Results: On a dry weight basis, the different CP fractions contained seven major anthocyanins (0.1-125 mg/g), six major phenolic acids (0.8-31 mg/g), seven flavonols (1-126 mg/g) and five flavan-3-ols (0.1-12 mg/g). Fractions rich in flavonols exhibited the most potent antioxidant capacities with ferric ion reducing antioxidant power values of 1.8-1.9 mmole/g and 2, 2-diphenyl-1-picrylhydrazyl radical scavenging IC50 values of 15.1-15.2 mg/L respectively. On the other hand, fractions rich in phenolic acids and flavan-3-ol monomers demonstrated the most potent anti-tyrosinase activity (IC50=6.1-6.2 mg/L) and anti-proliferative activity (IC50=7.8-15.8 mg/L). Generally, all the fractions exhibited a dose-response relationship in the selected biological activity assays.Conclusion: This study suggests an effective utilization of CP to obtain biologically active fractions with potential to be used in functional foods and nutraceuticals designed for the prevention of chronic diseases associated with oxidative stress.

Ability of Cranberry Proanthocyanidins in Combination with a Probiotic Formulation to Inhibit in Vitro Invasion of Gut Epithelial Cells by Extra-Intestinal Pathogenic E. Coli

Posted
Authors
Polewski MA, Krueger CG, Reed JD, Leyer G
Journal
Journal of Functional Foods; 2016. 25:123-134
Abstract

Cranberries and probiotics are individually considered as functional foods. This study evaluated the potential synergy between bioactive proanthocyanidins (c-PAC) derived from cranberries and probiotics on reducing the invasiveness of extra-intestinal pathogenic Escherichia coli (ExPEC) in a cell culture model. ExPEC can be a component of the gut microbiota in healthy individuals, and reducing the invasiveness of ExPEC is a potential means to lessen the risk of subsequent urinary tract infections (UTI), the most common bacterial infections in women. c-PAC (>92% A-type) concentrations greater than 36 micro g c-PAC/mL significantly (p<0.05) reduced ExPEC invasion, and was not inhibited by the presence of probiotics. Scanning electron microscopy suggests that the mechanism by which c-PAC prevent ExPEC invasion is by cross-linking surface virulence factors. A probiotic blend also significantly reduced invasion, albeit via a different mechanism. This study demonstrated the potential benefit of combining functional A-type c-PAC components in cranberry foods with probiotics.

Comparison of A-type Proanthocyanidins in Cranberry and Peanut Skin Extracts Using Matrix Assisted Laser Desorption Ionization-Time Of Flight Mass Spectrometry

Posted
Authors
Ye L, Neilson A, Sarnoski P, Ray WK, Duncan S
Journal
J Mol Genet Med. 2016;10(209):1747-086
Abstract

Cranberry products have long been used to treat urinary tract infections. It is believed that the A-type proanthocyanidins in cranberries contribute to this function. Peanut is one of the other, few food sources that primarily contain A-type proanthocyanidins. The skin on the outside of the peanut kernels (testa), which is treated as an agriculture waste product, contains high levels of A-type proanthocyanidins. In this study, an HPLC diol column separation method and MALDI-TOF MS were used to characterize and compare the proanthocyanidin compositions of peanut skins and cranberries. MALDI-TOF MS in linear mode was able to detect a group of proanthocyanidins with DP (degree of polymerization) 10 in peanut skin extract, but was only able to detect DP 8 in cranberry extract.The reflectron mode showed clusters of clear narrow peaks at DP 7 in peanut skin extract, while the highest DP resolved for cranberry extract was only 3 in reflectron mode. This might be due to the low response intensity of the cranberry samples with the current cleanup method and the matrix. Based on the resolved peaks in reflectron mode, peanut skins and cranberries have similar proanthocyanidins composition; they contain both A-type and B-type proanthocyanidins, with the A-type being predominant. This result may inspire future studies on the comparison of biological functions between peanut skins and cranberries and further comparison of their polymeric proanthocyanidin composition.

Determination of Anthocyanins in Cherry and Cranberry by High-Performance Liquid Chromatography–Electrospray Lonization–Mass Spectrometry

Posted
Authors
Karaaslan NM, Yaman M
Journal
Eur Food Res Technol (2016) 242: 127
Abstract

Anthocyanins are a group of widespread natural phenolic compounds in vegetables and fruits. The anthocyanins have a wide range of applications due to the antioxidant, anticancer and anti-inflammatory properties. In this study, anthocyanins (delphinidin-3-o-glucoside, cyanidin-3-o-glucoside, pelargonidin-3-o-glucoside and malvidin-3-o-glucoside) in cherry and cranberry were determined using high-performance liquid chromatography–electrospray ionization–mass spectrometry (HPLC–ESI–MS). The anthocyanins were separated using gradient elution and a reserved-phase analytical column before identification by high-performance liquid chromatography–electrospray ionization–mass spectrometry. A high-performance liquid chromatography–electrospray ionization–mass spectrometry method was optimized for the determination of anthocyanins in cherry and cranberry. Furthermore, in this study, we investigated extraction conditions of fruit samples as well as determination of optimum HPLC–ESI–MS conditions. This study is novel in terms of simultaneously examining both optimization of HPLC parameters and extraction conditions. Obtained optimum conditions were used for the determination as the quantitative and qualitative analysis of anthocyanins in cherry and cranberry. The content of anthocyanins on the basis of wet weight in cherry and cranberry samples was determined for delphinidin-3-o-glucoside

Study of the Impact of Cranberry Extract on the Virulence Factors and Biofilm Formation by Enterococcus Faecalis Strains Isolated from Urinary Tract Infections

Posted
Authors
Wojnicz D, Tichaczek-Goska D, Korzekwa K, Kicia M, Hendrich AB
Journal
Int J Food Sci Nutr 67(8):1005-16
Abstract

Drinking of cranberry fruit juice and application of commercial preparations containing the cranberry extracts are recommended in the prevention and treatment of urinary tract infections (UTIs), especially in women with recurrent UTIs. Many studies focus on the activity of cranberries against uropathogenic Escherichia coli (E. coli) strains. However, the knowledge of the cranberry effect on Gram-positive Enterococcus faecalis (E. faecalis) is limited. Therefore, the aim of our study was to establish the activity of commercial concentrated cranberry extract on the growth, virulence factors and biofilm formation of E. faecalis strains isolated from urine. Minimal inhibitory concentrations (MICs) of cranberry extract were determined by the broth microdilution method. Disc diffusion method was used to determine antimicrobial susceptibility. The impact of cranberry extract on bacterial survival, hydrophobicity, synthesis of lipase, lecithinase, DNase, hemolysin, gelatinase and biofilm mass was determined. Results show that cranberry extract inhibits the growth, enzymatic activities of bacteria and limits biofilm formation. The antibacterial activities of the studied cranberry extract confirm that it could be successfully used in prevention of UTIs caused by E. faecalis.

Ultrahigh Pressure Liquid Chromatography-Atmospheric Pressure Photoionization-Tandem Mass Spectrometry for the Determination of Polyphenolic Profiles in the Characterization and Classification of Cranberry-Based Pharmaceutical preparations and natural ext

Posted
Authors
Parets L, Alechaga E, Nunez O, Saurina J, Hernandez-Cassou S, Puignou L
Journal
Anal Methods 8(22):4363-4378
Abstract

Ultrahigh pressure liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) was applied to the analysis and authentication of fruit-based products and pharmaceutical preparations. Two sub-2 micro m C18 reversed-phase columns, Syncronis (100x2.1 mm, 1.7 micro m) and Hypersil Gold (50x2.1 mm, 1.9 micro m), were proposed under gradient elution with 0.1% formic acid aqueous solution and methanol mobile phases for the determination of 29 polyphenols, allowing us to obtain polyphenolic profiles in less than 13.5 and 23.5 min, respectively. Several atmospheric pressure ionization (API) sources (H-ESI, APCI, and APPI) were compared. For dopant-assisted APPI, four organic solvents, toluene, acetone, chlorobenzene and anisole, were evaluated as dopants. Both H-ESI and acetone-assisted APPI were selected as the best ionization sources for the analysis of targeted polyphenols. Acceptable sensitivity (LOD values down to 0.5 micro g kg-1 in the best of cases), linearity (r2 higher than 0.995) and good precision (RSD values lower than 15.1%) and trueness (relative errors lower than 10.2%) were obtained using both UHPLC-API-MS/MS methods. A simple extraction procedure, consisting of sample sonication with acetone/water/hydrochloric acid (70:29.9:0.1 v/v/v) and centrifugation, was used. The proposed UHPLC-ESI-MS/MS and UHPLC-APPI-MS/MS methods with both C18 reversed-phase columns were then applied to the analysis of 32 grape-based and cranberry-based natural products and pharmaceutical preparations. Polyphenolic profile data were then analyzed by principal component analysis (PCA) to extract information on the most significant data contributing to the classification of natural extracts according to the type of fruit.