Back to top

Search

Oncology/Anti-Cancer: Animal

Displaying 11 - 13 of 13

Effect of cranberry juice concentrate on chemically-induced urinary bladder cancers.

Posted: 
November 8, 2010
Authors: 
Prasain JK, Jones K, Moore R, Barnes S, Leahy M, Roderick R, Juliana MM, Grubbs CJ
Journal: 
Oncol Rep 19(6):1565-70
Abstract: 

The chemopreventive efficacy of cranberry juice concentrate in an experimental model of urinary bladder cancer was evaluated using female Fischer-344 rats. The animals received N-butyl-N-(4-hydroxybutyl)-nitrosamine (OH-BBN) for a period of eight weeks. Cranberry juice concentrate was administered at doses of 1.0 or 0.5 ml/rat/day beginning one week after the final OH-BBN treatment and continuing until the end of the study. The urinary bladders of all the rats were weighed and examined grossly for lesions, and all masses were submitted for pathological evaluation. A dose-dependent preventive effect of cranberry treatment was observed, with a reduced number of urinary bladder cancers (38%) in the 1.0 ml/rat/day group versus the control group. The cranberry extract neither affected body weight gain nor caused other signs of toxicity. For the metabolic studies, serum and urine were collected at 4 and 12 h after the administration of the cranberry juice concentrate and were analyzed by LC-MS/MS. Quercetin and its methylated derivative were detected in the urine samples. However, no quercetin was detected in the serum samples, indicating its poor bioavailability. These data suggest that components of cranberries may be effective in preventing urinary bladder carcinogenesis.

Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats

Posted: 
November 4, 2010
Authors: 
Elberry AA, Abdel-Naim AB, Abdel-Sattar EA, Nagy AA, Mosli HA, Mohamadin AM, Ashour OM.
Journal: 
Food Chem Toxicol 48(5):1178-84
Abstract: 

Doxorubicin (DOX) is a widely used cancer chemotherapeutic agent. However, it generates free oxygen radicals that result in serious dose-limiting cardiotoxicity. Supplementations with berries were proven effective in reducing oxidative stress associated with several ailments. The aim of the current study was to investigate the potential protective effect of cranberry extract (CRAN) against DOX-induced cardiotoxicity in rats. CRAN was given orally to rats (100mg/kg/day for 10 consecutive days) and DOX (15mg/kg; i.p.) was administered on the seventh day. CRAN protected against DOX-induced increased mortality and ECG changes. It significantly inhibited DOX-provoked glutathione (GSH) depletion and accumulation of oxidized glutathione (GSSG), malondialdehyde (MDA), and protein carbonyls in cardiac tissues. The reductions of cardiac activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were significantly mitigated. Elevation of cardiac myeloperoxidase (MPO) activity in response to DOX treatment was significantly hampered. Pretreatment of CRAN significantly guarded against DOX-induced rise of serum lactate dehydrogenase (LDH), creatine phosphokinase (CK), creatine kinase-MB (CK-MB) as well as troponin I level. CRAN alleviated histopathological changes in rats' hearts treated with DOX. In conclusion, CRAN protects against DOX-induced cardiotoxicity in rats. This can be attributed, at least in part, to CRAN's antioxidant activity.

Cranberry phytochemical extract inhibits SGC-7901 cell growth and human tumor xenografts in Balb/c nu/nu mice

Posted: 
November 4, 2010
Authors: 
Liu M, Lin LQ, Song BB, Wang LF, Zhang CP, Zhao JL, Liu JR
Journal: 
J Agric Food Chem 57(2):762-8
Abstract: 

Cranberry extract possesses potent antioxidant capacity and antiproliferative activity against cancer in vitro and in vivo. The objectives of this study were to determine whether the cranberry extract inhibited proliferation of human gastric cancer SGC-7901 cells and human gastric tumor xenografts in the Balb/c nu/nu mouse. Cranberry extract at doses of 0, 5, 10, 20, and 40 mg/mL significantly inhibited proliferation of SGC-7901 cells, and this suppression was partly attributed to decreased PCNA expression and apoptosis induction. In a human tumor xenograft model, the time of human gastric tumor xenografts in the mouse was delayed in a dose-dependent manner. A dose-response inhibition was also observed in the averages of size, weight, and volume of tumor xenografts in the mouse between the control and cranberry-treated groups. These results demonstrate fresh cranberries to be a chemopreventive reagent.

Pages