Health Research

Health Research Library

Search

2014

Displaying 11 - 20 of 45

Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms.

Posted
Authors
Rane HS, Bernardo SM, Howell AB, Lee SA
Journal
J Antimicrob Chemother 69(2):428-36
Abstract

OBJECTIVES: Candida albicans is a common cause of nosocomial urinary tract infections (UTIs) and is responsible for increased morbidity and healthcare costs. Moreover, the US Centers for Medicare & Medicaid Services no longer reimburse for hospital-acquired catheter-associated UTIs. Thus, development of specific approaches for the prevention of Candida urinary infections is needed. Cranberry juice-derived proanthocyanidins (PACs) have efficacy in the prevention of bacterial UTIs, partially due to anti-adherence properties, but there are limited data on their use for the prevention and/or treatment of Candida UTIs. Therefore, we sought to systematically assess the in vitro effect of cranberry-derived PACs on C. albicans biofilm formation in artificial urine.

METHODS: C. albicans biofilms in artificial urine were coincubated with cranberry PACs at serially increasing concentrations and biofilm metabolic activity was assessed using the XTT assay in static microplate and silicone disc models.

RESULTS: Cranberry PAC concentrations of >16 mg/L significantly reduced biofilm formation in all C. albicans strains tested, with a paradoxical effect observed at high concentrations in two clinical isolates. Further, cranberry PACs were additive in combination with traditional antifungals. Cranberry PACs reduced C. albicans adherence to both polystyrene and silicone. Supplementation of the medium with iron reduced the efficacy of cranberry PACs against biofilms.

CONCLUSIONS: These findings indicate that cranberry PACs have excellent in vitro activity against C. albicans biofilm formation in artificial urine. We present preliminary evidence that cranberry PAC activity against C. albicans biofilm formation is due to anti-adherence properties and/or iron chelation.

Effectiveness of cranberry capsules to prevent urinary tract infections in vulnerable older persons: a double-blind randomized placebo-controlled trial in long-term care facilities.

Posted
Authors
Caljouw MAA, Hout WB van den, Putter H, Achterberg WP, Cools HJM, Gussekloo J
Journal
J Am Geriatr Soc 62(1):103-10
Abstract

OBJECTIVES: To determine whether cranberry capsules prevent urinary tract infection (UTI) in long-term care facility (LTCF) residents. DESIGN: Double-blind randomized placebo-controlled multicenter trial. SETTING: Long-term care facilities (LTCFs). PARTICIPANTS: LTCF residents (N=928; 703 women, median age 84). MEASUREMENTS: Cranberry and placebo capsules were taken twice daily for 12 months. Participants were stratified according to UTI risk (risk factors included long-term catheterization, diabetes mellitus, >=1 UTI in preceding year). Main outcomes were incidence of UTI according to a clinical definition and a strict definition. RESULTS: In participants with high UTI risk at baseline (n=516), the incidence of clinically defined UTI was lower with cranberry capsules than with placebo (62.8 vs 84.8 per 100 person-years at risk, P=.04); the treatment effect was 0.74 (95% confidence interval (CI)=0.57-0.97). For the strict definition, the treatment effect was 1.02 (95% CI=0.68-1.55). No difference in UTI incidence between cranberry and placebo was found in participants with low UTI risk (n=412). CONCLUSION: In LTCF residents with high UTI risk at baseline, taking cranberry capsules twice daily reduces the incidence of clinically defined UTI, although it does not reduce the incidence of strictly defined UTI. No difference in incidence of UTI was found in residents with low UTI risk.

Evaluating the binding of selected biomolecules to cranberry derived proanthocyanidins using the quartz crystal microbalance.

Posted
Authors
Weckman NE, Olsson AL, Tufenkji N
Journal
Biomacromolecules 15(4):1375-81
Abstract

Despite cranberry being associated with the prevention of bacterial infections for over a century, our understanding of the bioavailability and mechanisms by which cranberry prevents infection is limited. This study investigates the interactions between cranberry proanthocyanidins (CPAC) and human serum proteins (albumin, alpha-1-acid glycoprotein, and fibrinogen) that may be encountered during CPAC metabolism following ingestion. To better understand how CPAC might interfere with bacterial infection, we also examined the interactions between CPAC and selected bacterial virulence factors; namely, lipopolysaccharide (LPS) and rhamnolipid. The binding of CPAC to the serum proteins, rhamnolipids and LPS from Escherichia coli O111:B4 can be described by Langmuir-type isotherms, allowing the determination of the apparent adsorption affinity constants, with CPAC interacting most strongly with fibrinogen with a binding constant of 2.2 x 10(8) M(-1). These binding interactions will limit the bioavailability of the CPAC at the site of action, an important consideration in designing further clinical trials. Furthermore, CPAC interacts with Pseudomonas aeruginosa 10 LPS, E. coli O111:B4 LPS, and P. aeruginosa rhamnolipids in fundamentally different manners, supporting the theory that cranberry prevents bacterial infections via multiple mechanisms.

Exploring the role of cranberry polyphenols in periodontits: A brief review.

Posted
Authors
Mukherjee M, Bandyopadhyay P, Kundu D
Journal
J Indian Soc Periodontol 18(2):136-9
Abstract

Cranberry juice polyphenols have gained importance over the past decade due to their promising health benefits. The bioactive component, proanthocyanidins is mainly responsible for its protective effect. A lot has been said about its role in urinary tract infection and other systemic diseases, but little is known about its oral benefits. An extensive search was carried out in the PubMed database using the terms "cranberry polyphenols" and "periodontitis" together. The institute library was also thoroughly scrutinized for all relevant information. Thus, a paper was formulated, the aim of which was to review the role of high molecular weight cranberry fraction on oral tissues and periodontal diseases.

Inhibition of interleukin 1beta-stimulated interleukin-6 production by cranberry components in human gingival epithelial cells: effects on nuclear factor B and activator protein 1 activation pathways

Posted
Authors
Tipton DA, Carter TB, Dabbous MKh
Journal
J Periodontal Res 49(4):437-47
Abstract

BACKGROUND AND OBJECTIVE: In periodontitis, gingival epithelial cells can produce interleukin (IL)-6, a regulator of osteoclastic bone resorption, in response to IL-1beta. IL-1beta regulates cytokine expression via signaling pathways, including nuclear factor (NF)-B and mitogen activated protein kinase (MAPK)/activator protein (AP)-1. Cranberry proanthocyanidins (PACs) inhibit IL-1beta-stimulated IL-6 production, but specific mechanisms are unclear. The objectives of this study were to determine effects of cranberry PACs on NF-B and MAPK/AP-1 activation of IL-1beta-stimulated IL-6 production in gingival epithelial cells.

MATERIAL AND METHODS: Cranberry high molecular weight non-dialyzable material (NDM), rich in PACs, was derived from cranberry juice. Human gingival epithelial cells [Smulow-Glickman (S-G)] were incubated with IL-1beta in the presence or absence of NDM or inhibitors of NF-B, [nemo-binding domain (NBD) peptide] or AP-1 (SP600125), and IL-6 levels were measured by ELISA. Effects of NDM on IL-1beta-activated NF-B and AP-1 and phosphorylated intermediates in both pathways were measured in cell extracts via binding to specific oligonucleotides and specific sandwich ELISAs, respectively. Data were analyzed using ANOVA and Scheffe's F procedure for post hoc comparisons.

RESULTS: IL-1beta (> 0.1 nm) caused a time- and dose-dependent stimulation of S-G epithelial cell IL-6 production (p 0.005). This was significantly decreased in a dose-dependent manner by NBD peptide or SP600125 [maximum inhibition ~30-40% (p 0.02)], and together, the two inhibitors decreased IL-6 by ~80%, similar to the inhibition caused by NDM (p 0.001). IL-1beta stimulated NF-B and AP-1 activation (p 0.003), which was inhibited by NDM (p 0.0001). NDM did not significantly affect IL-1beta-stimulated levels of phosphorylated intermediates in the NF-B pathway (IBalpha) or the AP-1 pathway (c-Jun, ERK1/2).

CONCLUSION: In S-G epithelial cells, IL-1beta appeared to upregulate IL-6 production via activation of both NF-B and MAPK/AP-1 signaling pathways because cranberry NDM decreased nuclear levels of IL-1beta-activated NF-B (p65) and AP-1 (phospho-c-Jun) and strongly inhibited IL-6 production. Lack of inhibition of phosphorylation of IBalpha, c-Jun or ERK1/2 suggested that NDM might affect both pathways downstream from those points in S-G cells, such as ubiquitination and proteosomal degradation of IBalpha, or inhibition of nuclear activity of c-Jun and/or ERK1/2. Defining these points of inhibition precisely may help identify molecular targets of cranberry polyphenols. 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Lifespan extension by cranberry supplementation partially requires SOD2 and is life stage independent.

Posted
Authors
Sun Y, Yolitz J, Alberico T, Sun X, Zou S
Journal
Exp Gerontol 50:57-63
Abstract

Many nutraceuticals and pharmaceuticals have been shown to promote healthspan and lifespan. However, the mechanisms underlying the beneficial effects of prolongevity interventions and the time points at which interventions should be implemented to achieve beneficial effects are not well characterized. We have previously shown that a cranberry-containing nutraceutical can promote lifespan in worms and flies and delay age-related functional decline of pancreatic cells in rats. Here we investigated the mechanism underlying lifespan extension induced by cranberry and the effects of short-term or life stage-specific interventions with cranberry on lifespan in Drosophila. We found that lifespan extension induced by cranberry was associated with reduced phosphorylation of ERK, a component of oxidative stress response MAPK signaling, and slightly increased phosphorylation of AKT, a component of insulin-like signaling. Lifespan extension was also associated with a reduced level of 4-hydroxynonenal protein adducts, a biomarker of lipid oxidation. Moreover, lifespan extension induced by cranberry was partially suppressed by knockdown of SOD2, a major mitochondrial superoxide scavenger. Furthermore, cranberry supplementation was administered in three life stages of adult flies, health span (3-30 days), transition span (31-60 days) and senescence span (61 days to the end when all flies died). Cranberry supplementation during any of these life stages extended the remaining lifespan relative to the non-supplemented and life stage-matched controls. These findings suggest that cranberry supplementation is sufficient to promote longevity when implemented during any life stage, likely through reducing oxidative damage. Published by Elsevier Inc.

Modulation of strawberry/cranberry phenolic compounds glucuronidation by co-supplementation with onion: characterization of phenolic metabolites in rat plasma using an optimized micro SPE-UHPLC-MS/MS method.

Posted
Authors
Dudonne S, Dube P, Pilon G, Marette A, Jacques H, Weisnagel J, Desjardins Y
Journal
J Agric Food Chem 62(14):3244-56
Abstract

Plant phenolic compounds are suggested to exert pharmacological activities in regards to obesity and type-2 diabetes, but their mode of action is poorly understood due to a lack of information about their bioavailability. This work aimed to study the bioavailability of GlucoPhenol phenolic compounds, a strawberry-cranberry extracts blend, by characterizing plasma phenolic profile in obese rats. A comparison was performed by co-supplementation with an onion extract. Using an optimized micro SPE-UHPLC-MS/MS method, 21 phenolic metabolites were characterized, mostly conjugated metabolites and microbial degradation products of the native phenolic compounds. Their kinetic profiles revealed either an intestinal or hepatic formation. Among identified metabolites, isorhamnetin glucuronide sulfate was found in greater amount in plasma. Three glucuronidated conjugates of strawberry-cranberry phenolic compounds, p-hydroxybenzoic acid glucuronide, catechins glucuronide, and methyl catechins glucuronide were found in higher quantities when GlucoPhenol was ingested together with onion extract (+252%, +279%, and +118% respectively), suggesting a possible induction of glucuronidation processes by quercetin. This work allowed the characterization of actual phenolic metabolites generated in vivo following a phenolic intake, the analysis of their kinetics and suggested a possible synergistic activity of phenolic compounds for improving bioavailability.

Prevention of urinary tract infections with Vaccinium products.

Posted
Authors
Davidson E, Zimmermann BF, Jungfer E, Chrubasik-Hausmann S
Journal
Phytother Res 28(3):465-70
Abstract

Cranberries exert a dose-dependent inhibition of the adherence of E. coli fimbriae to uroepithelial cells. This was demonstrated in vitro but also ex vivo in vitro with urine from cranberry consumers. The active principle has not been identified in detail but type-A proanthocyanidins (PAC) play an important role in the mechanism of action. Since the three species, American cranberry (Vaccinium macrocarpon), European cranberry (Vaccinium oxycoccus) and/or lingonberry (Vaccinium vitis-idaea), have different patterns of type-A PACs, results from one species cannot be transferred to the others. It seems likely that most of the studies with monopreparations from V. macrocarpon were underdosed. Whereas photometric PAC quantification may overestimate the true content on co-active compounds, reversed phase high-performance liquid chromatograpy may underestimate them. Recent studies with PAC doses in the upper range (DMAC method) or declared type-A PAC content in the daily dose reveal a dose-dependent trend of clinical effectiveness, however, with a possible ceiling effect. In order to clarify this, future three-arm studies should investigate Vaccinium preparations with higher type-A PAC doses than previously used. We analysed two popular European vitis-idaea products, a mother juice and a proprietary extract. Both preparations may be appropriate to confirm the Vaccinium urinary tract infection-preventive effect beyond doubt.

Promising results of cranberry in the prevention of oral Candida biofilms.

Posted
Authors
Girardot M, Guerineau A, Boudesocque L, Costa D, Bazinet L, Enguehard-Gueiffier C, Imbert C
Journal
Pathog Dis 70(3):432-9
Abstract

In the context of dental caries prevention by natural foodstuff sources, antifungal and antibiofilm activities of dry commercial extracts of cranberry fruit (Vaccinium macrocarpon Aiton) and two other red fruits (Vaccinium myrtillus L. and Malpighia punicifolia L.) were assessed on Candida albicans and Candida glabrata yeasts. When added to the culture medium, the cranberry extract displayed a significant anti-adhesion activity against Candida spp. when used at low concentrations. In addition, the pretreatment of surfaces with this extract induced an anti-adhesion activity mainly against C. glabrata yeasts and an antibiofilm activity against C. albicans. This activity was dependent on concentration, species, and strain. A phytochemical investigation bioguided by anti-adhesion tests against the two Candida species was carried out on crude cranberry juice to determine the active fractions. Three subfractions enriched in proanthocyanidins showed an anti-adhesion activity at low concentrations. This study investigated for the first time the interest of crude extracts of cranberry and cranberry juice fractions to prevent biofilms of C. glabrata. It highlighted the potency of consuming this fruit and using it as a source of anti-adhesion agents. 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

Ratio of "A-type" to "B-type" proanthocyanidin interflavan bonds affects extra-intestinal pathogenic Escherichia coli invasion of gut epithelial cells.

Posted
Authors
Feliciano RP, Meudt JJ, Shanmuganayagam D, Krueger CG, Reed JD
Journal
J Agric Food Chem 62(18):3919-25
Abstract

Gut colonization by extra-intestinal pathogenic Escherichia coli (ExPEC) increases the risk of subsequent infections, including urinary tract infection and septicemia. Previous work suggests that cranberry proanthocyanidins (PAC) interact with bacterial surface factors, altering bacterial interaction with host cells. Methods were developed to determine if ratios of "A-type" to "B-type" interflavan bonds in PAC affect ExPEC agglutination and invasion of enterocytes. In cranberries, 94.5% of PAC contain one or more "A-type" bonds, whereas in apples, 88.3% of PAC contain exclusively "B-type" bonds. Results show that cranberry "A-type" PAC have greater bioactivity than apple "B-type" PAC for increasing ExPEC agglutination and decreasing ExPEC epithelial cell invasion.