Health Research

Health Research Library

Search

Oncology/Anti-Cancer: In-Vitro

Displaying 21 - 30 of 33

MALDI-TOF MS characterization of proanthocyanidins from cranberry fruit (Vaccinium macrocarpon) that inhibit tumor cell growth and matrix metalloproteinase expression in vitro.

Posted
Authors
Neto CC, Krueger CG, Lamoureaux TL, Kondo M, Vaisberg AJ, Hurta RAR, Curtis S, et al
Journal
J Sci Food Agr 86(1):18-25
Abstract

Abstract:Proanthocyanidin-rich extracts were prepared by fractionation of the fruit of theNorthAmerican cranberry (Vaccinium macrocarpon). In vitro growth inhibition assays in eight tumor cell lines showed that selected fractions inhibited the growth of H460 lung tumors, HT-29 colon and K562 leukemia cells at GI50 values ranging from 20 to 80 μgml−1. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of one of these fractions found it to be composed of polyflavan-3-ols, which are primarily tetramers through heptamers of epicatechin containing one or two A-type linkages. Whole cranberry extract and the proanthocyanidin fractions were screened for effect on the expression of matrix metalloproteinases in DU 145 prostate carcinoma cells. The expression of MMP-2 and MMP-9 was inhibited in response to whole cranberry extract and to a lesser degree by the proanthocyanidin fractions

Cranberry extract and quercetin modulate the expression of cyclooxygenase-2 (COX-2) and I kappa B alpha in human colon cancer cells

Posted
Authors
Narayansingh R, Hurta RAR
Journal
J Sci Food Agr 89(3):542-547
Abstract

BACKGROUND: Cranberry (Vaccinium marcocarpon) fruit and quercetin, a major flavonoid found in cranberries, are likely contributors to chemoprevention, and their anti-inflammatory activities may play a potential role in colon cancer prevention. The aim of this study was to examine the effect of cranberry extract and quercetin on basal expression of cyclooxygenase-2 (COX-2) and IκBα as well as the effect on phorbol 12-myristate 13-acetate (PMA)-induced COX-2 expression in colon cancer cells.
RESULTS: HT-29 human colon adenocarcinoma cells were treated with various concentrations of cranberry extract or quercetin and/or PMA, and the protein expression of COX-2 and IκBα was determined. The results indicated that cranberry extract and quercetin decreased COX-2 expression and suppressed degradation of IκBα in unstimulated cells. In PMA-stimulated cells, cranberry extract was also able to decrease COX-2 expression and suppress degradation of IκBα.
CONCLUSION: The results suggest that a possible mechanism involved in the anti-cancer activity of cranberry and quercetin is partly mediated through its anti-inflammatory action. These findings indicate that cranberry and quercetin may reduce the risk of colon cancer possibly by suppressing inflammatory responses.

Cranberry PACs and triterpenoids: anti-cancer activities in colon tumor cell lines

Posted
Authors
Liberty AM, Amoroso JW, Neto CC, Hart PE, Patil B, Murano P, Amiot-Carlin MJ
Journal
Acta Hort 841:61-66
Abstract

Phytochemicals from North American cranberry (Vaccinium macrocarpon) fruit may be expected to influence the development of colon cancer. Tissue-culture models were used to assess effects of cranberry components on cell proliferation, apoptosis, and the formation of tumor cell colonies. Several phytochemicals and fractions isolated from whole cranberry fruit were previously reported to inhibit growth and proliferation of breast, colon, prostate, and other tumor cell lines. In HT-29 and HCT116 colon tumor cell lines, cranberry proanthocyanidins (PACs) and ursolic acid inhibited the formation of tumor colonies over a two week period in a dose-dependent manner. Apoptosis is likely to play a role in limiting tumor cell proliferation. In HT-29 and HCT116 colon tumor cell lines treated with either ursolic acid or a cranberry proanthocyanidin fraction, the percentage of cells undergoing apoptosis increased in a dose-dependent manner. Thus, cranberry phytochemicals have the potential to limit carcinogenesis.

In vitro anticancer activity of fruit extracts from Vaccinium species

Posted
Authors
Bomser J, Madhavi DL, Singletary K, Smith MA
Journal
Planta Med 62(3):212-6
Abstract

Fruit extracts of four Vaccinium species (lowbush blueberry, bilberry, cranberry, and lingonberry) were screened for anticarcinogenic compounds by a combination of fractionation and in vitro testing of their ability to induce the Phase II xenobiotic detoxification enzyme quinone reductase (QR) and to inhibit the induction of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis, by the tumor promoter phorbol 12-myristate 13-acetate (TPA). The crude extracts, anthocyanin and proanthocyanidin fractions were not highly active in QR induction whereas the ethyl acetate extracts were active QR inducers. The concentrations required to double QR activity (designated CDqr) for the ethyl acetate extracts of lowbush blueberry, cranberry, lingonberry, and bilberry were 4.2, 3.7, 1.3, and 1.0 microgram tannic acid equivalents (TAE), respectively, Further fractionation of the bilberry ethyl acetate extract revealed that the majority of inducer potency was contained in a hexane/chloroform subfraction (CDqr = 0.07 microgram TAE). In contrast to their effects on QR, crude extracts of lowbush blueberry, cranberry, and lingonberry were active inhibitors of ODC activity. The concentrations of these crude extracts needed to inhibit ODC activity by 50% (designated IC50) were 8.0, 7.0, and 9.0 micrograms TAE, respectively. The greatest activity in these extracts appeared to be contained in the polymeric proanthocyanidin fractions of the lowbush blueberry, cranberry, and lingonberry fruits (IC50 = 3.0, 6.0, and 5.0 micrograms TAE, respectively). The anthocyanidin and ethyl acetate extracts of the four Vaccinium species were either inactive or relatively weak inhibitors of ODC activity. Thus, components of the hexane/chloroform fraction of bilberry and of the proanthocyanidin fraction of lowbush blueberry, cranberry, and lingonberry exhibit potential anticarcinogenic activity as evaluated by in vitro screening tests.

Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways.

Posted
Authors
Déziel BA, Patel K, Neto C, Gottschall-Pass K, Hurta RA
Journal
J Cell Biochem 111(3):742-54
Abstract

Prostate cancer is one of the most common cancers in the Western world, and it is believed that an individual's diet affects his risk of developing cancer. There has been an interest in examining phytochemicals, the secondary metabolites of plants, in order to determine their potential anti-cancer activities in vitro and in vivo. In this study we document the effects of proanthocyanidins (PACs) from the American Cranberry (Vaccinium macrocarpon) on matrix metalloproteinase (MMP) activity in DU145 human prostate cancer cells. Cranberry PACs decreased cellular viability of DU145 cells at a concentration of 25 µg/ml by 30% after 6 h of treatment. Treatment of DU145 cells with PACs resulted in an inhibition of both MMPs 2 and 9 activity. PACs increased the expression of TIMP-2, a known inhibitor of MMP activity, and decreased the expression of EMMPRIN, an inducer of MMP expression. PACs decreased the expression of PI-3 kinase and AKT proteins, and increased the phosphorylation of both p38 and ERK1/2. Cranberry PACs also decreased the translocation of the NF-κB p65 protein to the nucleus. Cranberry PACs increased c-jun and decreased c-fos protein levels. These results suggest that cranberry PACs decreases MMP activity through the induction and/or inhibition of specific temporal MMP regulators, and by affecting either the phosphorylation status and/or expression of MAP kinase, PI-3 kinase, NF-κB and AP-1 pathway proteins. This study further demonstrates that cranberry PACs are a strong candidate for further research as novel anti-cancer agents.

In vivo inhibition of growth of human tumor lines by flavonoid fractions from cranberry extract.

Posted
Authors
Ferguson PJ, Kurowska EM, Freeman DJ, Chambers AF and Koropatnick J
Journal
Nutr Cancer 56(1):86-94
Abstract

Edible fruits and berries may serve as sources for novel anticancer agents, given that extracts of these foods have demonstrated cytotoxic activity against tumor cell lines. Semipurified, flavonoid-rich extracts of cranberry (Vaccinia macrocarpa) were shown previously to arrest proliferation of tumor cells and induce apoptosis. However, the ability of cranberry flavonoids to inhibit tumor growth in vivo has not been reported other than in a preliminary report. As model systems for testing this activity, human tumor cell lines representative of three malignancies were chosen: glioblastoma multiforme (U87), colon carcinoma (HT-29), and androgen-independent prostate carcinoma (DU145). A flavonoid-rich fraction 6 (Fr6) and a more purified proanthocyanidin (PAC)-rich fraction were isolated from cranberry presscake and whole cranberry, respectively, by column chromatography. Fr6 and PAC each significantly slowed the growth of explant tumors of U87 in vivo, and PAC inhibited growth of HT-29 and DU145 explants (P

Cranberry proanthocyanidins induce apoptosis and inhibit acid-induced proliferation of human esophageal adenocarcinoma cells.

Posted
Authors
Kresty LA, Howell AB, Baird M
Journal
J Agric Food Chem 56(3):676-80
Abstract

The occurrence of esophageal adenocarcinoma and its only recognized precursor lesion, Barrett's esophagus, has rapidly increased during the past three decades. The precise reason for the rise remains to be elucidated, but increasing rates have been linked to multiple nutritional factors. Plant-based diets have generally been associated with a reduction of risk for esophageal adenocarcinoma and those of animal origin with risk escalation. Moreover, a number of recent in vitro and limited in vivo investigations have reported that cranberry extracts affect multiple cancer-associated processes in breast, colon, prostate, and other cancer cell lines of epithelial origin. Thus, this study sought to investigate the chemopreventive potential of a cranberry proanthocyanidin rich extract (PAC) in SEG-1 human esophageal adenocarcinoma (EAC) cells. PAC pretreatment significantly inhibited the viability and proliferation of EAC cells in a time- and dose-dependent manner. Moreover, PAC (50 microg/mL) significantly inhibited acid-induced cell proliferation of SEG-1 cells. PAC treatment induced cell cycle arrest at the G1 checkpoint and significantly reduced the percentage of SEG-1 cells in S-phase following 24 and 48 h of exposure. PAC treatment also resulted in significant induction of apoptosis. Thus, PAC modulates cell cycle regulation, aberrant proliferation, and apoptosis, all key biological processes altered during progression to esophageal adenocarcinoma. These findings support that further mechanistic studies are warranted to more fully elucidate the inhibitory potential of PAC against esophageal cancer.

Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro

Posted
Authors
Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D
Journal
J Agric Food Chem 54(25):9329-39
Abstract

Berry fruits are widely consumed in our diet and have attracted much attention due to their potential human health benefits. Berries contain a diverse range of phytochemicals with biological properties such as antioxidant, anticancer, anti-neurodegerative, and anti-inflammatory activities. In the current study, extracts of six popularly consumed berries--blackberry, black raspberry, blueberry, cranberry, red raspberry and strawberry--were evaluated for their phenolic constituents using high performance liquid chromatography with ultraviolet (HPLC-UV) and electrospray ionization mass spectrometry (LC-ESI-MS) detection. The major classes of berry phenolics were anthocyanins, flavonols, flavanols, ellagitannins, gallotannins, proanthocyanidins, and phenolic acids. The berry extracts were evaluated for their ability to inhibit the growth of human oral (KB, CAL-27), breast (MCF-7), colon (HT-29, HCT116), and prostate (LNCaP) tumor cell lines at concentrations ranging from 25 to 200 micro g/mL. With increasing concentration of berry extract, increasing inhibition of cell proliferation in all of the cell lines were observed, with different degrees of potency between cell lines. The berry extracts were also evaluated for their ability to stimulate apoptosis of the COX-2 expressing colon cancer cell line, HT-29. Black raspberry and strawberry extracts showed the most significant pro-apoptotic effects against this cell line. The data provided by the current study and from other laboratories warrants further investigation into the chemopreventive and chemotherapeutic effects of berries using in vivo models.

Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines

Posted
Authors
Seeram NP, Adams LS, Hardy ML, Heber D
Journal
J Agric Food Chem 52(9):2512-7
Abstract

Cranberries (Vaccinium macrocarpon Ait.) are an excellent dietary source of phytochemicals that include flavonol glycosides, anthocyanins, proanthocyanidins (condensed tannins), and organic and phenolic acids. Using C-18 and Sephadex Lipophilic LH-20 column chromatography, HPLC, and tandem LC-ES/MS, the total cranberry extract (TCE) has been analyzed, quantified, and separated into fractions enriched in sugars, organic acids, total polyphenols, proanthocyanidins, and anthocyanins (39.4, 30.0, 10.6, 5.5, and 1.2% composition, respectively). Using a luminescent ATP cell viability assay, the antiproliferative effects of TCE (200 microg/mL) versus all fractions were evaluated against human oral (KB, CAL27), colon (HT-29, HCT116, SW480, SW620), and prostate (RWPE-1, RWPE-2, 22Rv1) cancer cell lines. The total polyphenol fraction was the most active fraction against all cell lines with 96.1 and 95% inhibition of KB and CAL27 oral cancer cells, respectively. For the colon cancer cells, the antiproliferative activity of this fraction was greater against HCT116 (92.1%) than against HT-29 (61.1%), SW480 (60%), and SW620 (63%). TCE and all fractions showed >/=50% antiproliferative activity against prostate cancer cells with total polyphenols being the most active fraction (RWPE-1, 95%; RWPE-2, 95%; 22Rv1, 99.6%). Cranberry sugars (78.8 microg/mL) did not inhibit the proliferation of any cancer cell lines. The enhanced antiproliferative activity of total polyphenols compared to TCE and its individual phytochemicals suggests synergistic or additive antiproliferative interactions of the anthocyanins, proanthocyanidins, and flavonol glycosides within the cranberry extract.

Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon)

Posted
Authors
Yan X, Murphy BT, Hammond GB, Vinson JA, Neto CC
Journal
J Agric Food Chem 50(21):5844-9
Abstract

Polyphenolic compounds in cranberries have been investigated to determine their role in protection against cardiovascular disease and some cancers. Extracts of whole fruit were assayed for radical-scavenging activity and tumor growth inhibition using seven tumor cell lines. Selective inhibition of K562 and HT-29 cells was observed from a methanolic extract in the range of 16-125 microg/mL. Radical-scavenging activity was greatest in an extract composed primarily of flavonol glycosides. Seven flavonol glycosides were isolated and purified from whole fruit for further evaluation; the anthocyanin cyanidin 3-galactoside was also purified for comparison with the flavonoids. Three flavonol monoglycosides were newly identified by (13)C NMR as myricetin 3-alpha-arabinofuranoside, quercetin 3-xyloside, and 3-methoxyquercetin 3-beta-galactoside (isorhamnetin); the other four isolated were the previously identified myricetin 3-beta-galactoside, quercetin 3-beta-galactoside, quercetin 3-alpha-arabinofuranoside, and quercetin 3-alpha-rhamnopyranoside. These compounds were evaluated for 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity and ability to inhibit low-density lipoprotein oxidation in vitro. Most of the flavonol glycosides showed antioxidant activity comparable or superior to that of vitamin E; cyanidin 3-galactoside showed activity superior to that of the flavonoids as well as vitamin E or Trolox in both antioxidant assays.