Health Research

Health Research Library

Search

Urinary Tract Health and Antibacterial Benefits: In-Vitro

Displaying 51 - 60 of 123

Proanthocyanidin-rich Extracts from Cranberry Fruit ( Vaccinium macrocarpon Ait.) Selectively Inhibit the Growth of Human Pathogenic Fungi Candida spp. and Cryptococcus neoformans.

Posted
Authors
Patel KD. Scarano FJ. Kondo M. Hurta RA. Neto CC.
Journal
J Agric Food Chem 59(24):12864-73
Abstract

Cranberry ( Vaccinium macrocarpon ) has been shown in clinical studies to reduce infections caused by Escherichia coli and other bacteria, and proanthocyanidins are believed to play a role. The ability of cranberry to inhibit the growth of opportunistic human fungal pathogens that cause oral, skin, respiratory, and systemic infections has not been well-studied. Fractions from whole cranberry fruit were screened for inhibition of five Candida species and Cryptococcus neoformans , a causative agent of fungal meningitis. Candida glabrata , Candida lusitaniae , Candida krusei , and Cryptococcus neoformans showed significant susceptibility to treatment with cranberry proanthocyanidin fractions in a broth microdilution assay, with minimum inhibitory concentrations as low as 1 mug/mL. MALDI-TOF MS analysis of subfractions detected epicatechin oligomers of up to 12 degrees of polymerization. Those containing larger oligomers caused the strongest inhibition. This study suggests that cranberry has potential as an antifungal agent.

The effect of nondialyzable material (NDM) cranberry extract on formation of contact lens biofilm by Staphylococcus epidermidis

Posted
Authors
Leshem R, Maharshak I, Ben Jacob E, Ofek I, Kremer I
Journal
Invest Ophthalmol Vis Sci 52(7):4929-34
Abstract

PURPOSE: To assess the effects of NDM from cranberries on Staphylococcus epidermidis biofilm formed on soft contact lenses.

METHODS: Soft contact lenses were incubated in Tryptic Soy Broth (TSB) together with S. epidermidis (ATCC35984/RP62A) and various concentrations of NDM, and inspected by scanning electron and confocal microscopy. The TSB was collected after sonification and monitored turbidometrically.

RESULTS: NDM at >=500 mug/mL concentration caused a significant (P

CONCLUSIONS: NDM reduces formation of biofilm on soft contact lenses. This has important implications for the prevention of contact lens-related corneal infections caused by S. epidermidis.

The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials

Posted
Authors
O'May C, Tufenkji N
Journal
Appl Environ Microbiol 77(9):3061-7
Abstract

Bacterial motility plays a key role in the colonization of surfaces by bacteria and the subsequent formation of resistant communities of bacteria called biofilms. Derivatives of cranberry fruit, predominantly condensed tannins called proanthocyanidins (PACs) have been reported to interfere with bacterial adhesion, but the effects of PACs and other tannins on bacterial motilities remain largely unknown. In this study, we investigated whether cranberry PAC (CPAC) and the hydrolyzable tannin in pomegranate (PG; punicalagin) affected the levels of motilities exhibited by the bacterium Pseudomonas aeruginosa. This bacterium utilizes flagellum-mediated swimming motility to approach a surface, attaches, and then further spreads via the surface-associated motilities designated swarming and twitching, mediated by multiple flagella and type IV pili, respectively. Under the conditions tested, both CPAC and PG completely blocked swarming motility but did not block swimming or twitching motilities. Other cranberry-containing materials and extracts of green tea (also rich in tannins) were also able to block or impair swarming motility. Moreover, swarming bacteria were repelled by filter paper discs impregnated with many tannin-containing materials. Growth experiments demonstrated that the majority of these compounds did not impair bacterial growth. When CPAC- or PG-containing medium was supplemented with surfactant (rhamnolipid), swarming motility was partially restored, suggesting that the effective tannins are in part acting by a rhamnolipid-related mechanism. Further support for this theory was provided by demonstrating that the agar surrounding tannin-induced nonswarming bacteria was considerably less hydrophilic than the agar area surrounding swarming bacteria. This is the first study to show that natural compounds containing tannins are able to block P. aeruginosa swarming motility and that swarming bacteria are repelled by such compounds.

Effect of juice processing on cranberry antibacterial properties

Posted
Authors
Cote J, Caillet S, Dussault D, Sylvain JF, Lacroix M
Journal
Food Res Int 44: 9, 2922-2929
Abstract

The effects of the industrial juice process on the ability of neutralized cranberry samples and extracts (polar, apolar and anthocyanins) to inhibit the growth of Enterococcus faecium resistant to vancomycin (ERV), Escherichia coli O157:H7 EDL 933, E. coli ATCC 25922, Listeria monocytogenes HPB 2812, Pseudomonas aeruginosa ATCC 15442, Salmonella Typhimurium SL1344 and Staphylococcus aureus ATCC 29213 were investigated. The juice process appeared to have a general enhancing effect on the antibacterial properties of cranberry polar and anthocyanin extracts. The lowest minimum inhibitory concentrations (MICs) (1.80-7.0 micro g phenol/well) were obtained when S. aureus, S. Typhimurium, and ERV were exposed to the juice concentrate. The growth of P. aeruginosa, L. monocytogenes, E. coli ATCC, and E. coli O157:H7 was not inhibited by the juice concentrate, but did show sensitivity (maximal tolerated concentrations of 0.007-0.4 micro g phenol/well). The lowest MICs (22.6-90.5 micro g phenol/well) for P. aeruginosa, S. aureus, S. Typhimurium, and ERV were observed when they were exposed to the cranberry anthocyanin extract obtained from cranberry pomace. The results also showed a negative effect of the juice process on the antibacterial properties of the cranberry apolar extracts: the one obtained from frozen cranberries was most efficient against P. aeruginosa, S. aureus, L. monocytogenes and S. Typhimirium (MIC of 45.50 micro g phenol/well). The tested bacteria showed the greatest resistance toward the cranberry extracts obtained from the mash and the macerated and depectinized mash

Induction of a state of iron limitation in uropathogenic Escherichia coli CFT073 by cranberry-derived proanthocyanidins as revealed by microarray analysis

Posted
Authors
Hidalgo G, Ponton A, Fatisson J, O'May C, Asadishad B, Schinner T, Tufenkji N.
Journal
Appl Environ Microbiol 77(4):1532-5.
Abstract

Transcriptional profiles of uropathogenic Escherichia coli CFT073 exposed to cranberry-derived proanthocyanidins (PACs) were determined. Our results indicate that bacteria grown on media supplemented with PACs were iron deprived. To our knowledge, this is the first time that PACs have been shown to induce a state of iron limitation in this bacterium.

Inhibition of Escherichia coli CFT073 fliC expression and motility by cranberry materials.

Posted
Authors
Hidalgo G, Chan M, Tufenkji N
Journal
Appl Environ Microbiol 77(19):6852-7
Abstract

In humans, uropathogenic Escherichia coli (UPEC) is the most common etiological agent of uncomplicated urinary tract infections (UTIs). Cranberry extracts have been linked to the prevention of UTIs for over a century; however, a mechanistic understanding of the way in which cranberry derivatives prevent bacterial infection is still lacking. In this study, we used a fliC-lux reporter as well as quantitative reverse transcription-PCR to demonstrate that when UPEC strain CFT073 was grown or exposed to dehydrated, crushed cranberries or to purified cranberry-derived proanthocyanidins (cPACs), expression of the flagellin gene (fliC) was inhibited. In agreement with these results, transmission electron microscopy imaging of bacteria grown in the presence of cranberry materials revealed fewer flagella than those in bacteria grown under control conditions. Furthermore, we showed that swimming and swarming motilities were hindered when bacteria were grown in the presence of the cranberry compounds. Because flagellum-mediated motility has been suggested to enable UPEC to disseminate to the upper urinary tract, we propose that inhibition of flagellum-mediated motility might be a key mechanism by which cPACs prevent UTIs. This is the first report to show that cranberry compounds inhibit UPEC motility via downregulation of the fliC gene. Further studies are required to establish whether these inhibitors play a role in vivo.

Iron chelation by cranberry juice and its impact on Escherichia coli growth.

Posted
Authors
Lin B, Johnson BJ, Rubin RA, Malanoski AP, Ligler FS
Journal
Biofactors 37(2):121-30.
Abstract

The various health benefits of Vaccinium macrocarpon (cranberry) are well documented and have been attributed mainly to its antioxidant capacity and anti-adhesive activity. Several different mechanisms have been proposed to explain the possible role of cranberries, cranberry juice, and cranberry extracts in inhibiting bacterial growth. These mechanisms of action (i.e., inhibition of the microbial growth) have not been thoroughly studied. Here, we took advantage of current advances in microarray technology and used GeneChip® Escherichia coli genome 2.0 arrays to gain insight into the molecular mechanisms involved in the impact of cranberry juice on the properties of E. coli growth. The inclusion of cranberry juice in bacterial growth media was found to significantly impact the doubling time of E. coli. The gene expression results revealed altered expression of genes associated with iron transport and essential metabolic enzymes as well as with adenosine triphosphate (ATP) synthesis and fumarate hydratase in these cultures. The altered expression of genes associated with iron transport was consistent with the strong iron chelating capability of proanthocyanidins, a major constituent of cranberry juice. The iron depletion effect was confirmed by adding exogenous iron to the growth media. This addition partially reversed the inhibitory effect on bacterial growth observed in the presence of cranberry juice/extracts.

A-type cranberry proanthocyanidins inhibit the RANKL-dependent differentiation and function of human osteoclasts.

Posted
Authors
Tanabe S, Santos J, La VD, Howell AB, Grenier D
Journal
Molecules. 16(3):2365-74
Abstract

This study investigated the effect of A-type cranberry proanthocyanidins (AC-PACs) on osteoclast formation and bone resorption activity. The differentiation of human pre-osteoclastic cells was assessed by tartrate-resistant acid phosphatase (TRAP) staining, while the secretion of interleukin-8 (IL-8) and matrix metalloproteinases (MMPs) was measured by ELISA. Bone resorption activity was investigated by using a human bone plate coupled with an immunoassay that detected the release of collagen helical peptides. AC-PACs up to 100 microg/mL were atoxic for osteoclastic cells. TRAP staining evidenced a dose-dependent inhibition of osteoclastogenesis. More specifically, AC-PACs at 50 microg/mL caused a 95% inhibition of RANKL-dependent osteoclast differentiation. This concentration of AC-PACs also significantly increased the secretion of IL-8 (6-fold) and inhibited the secretion of both MMP-2 and MMP-9. Lastly, AC-PACs (10, 25, 50 and 100 microg/ml) affected bone degradation mediated by mature osteoclasts by significantly decreasing the release of collagen helical peptides. This study suggests that AC-PACs can interfere with osteoclastic cell maturation and physiology as well as prevent bone resorption. These compounds may be considered as therapeutic agents for the prevention and treatment of periodontitis.

Anti-Helicobacter activity of certain food plant extracts and juices and their composition in vitro

Posted
Authors
Babarikina A, Nikolajeva V, Babarykin D
Journal
Food Nut Sci 2, 868-877
Abstract

Plant material screening was performed to study anti-Helicobacter pylori activity in vitro using an agar diffusion method on Columbia blood agar. 33 substances, juices and plant extracts and 35 of their combinations were tested. Quince (Cydonia oblonga) juice demonstrated the strongest anti-H. pylori activity followed by cranberry juice. Concentrated apple juice, plum, red currant, black chokeberry, raspberry and bilberry juice also showed significant activity. Green tea and apple pomace extract as well as sweet flag rhizome, ginger and wild bergamot extract, cherry syrup, red beet juice and whey did not exhibit anti-Helicobacter activity. Quince juice in combination with bilberry, black chokeberry, red currant juice, green tea, sweet flag rhizome or apple pomace extract as well as cranberry juice in combination with sweet flag rhizome extract demonstrated a synergistic effect on inhibition of H. pylori. The obtained results offer new perspectives for development of functional anti-Helicobacter food product(s) for dietary management of H. pylori infection. The essential components of these products could be the most active juices and extracts like quince and cranberry juice supplemented with a corresponding synergist. Further studies are required to investigate the mechanism of antibacterial action of plant products and their efficacy in vivo.

Antimicrobial effect of cranberry juice and extracts

Posted
Authors
Cote, J. Caillet, S. Doyon, G. Dussault, D. Sylvain, J. F. Lacroix, M
Journal
Food Control 22: 8, 1413-1418.
Abstract

The antimicrobial effect of cranberry juice and of three cranberry extracts (water-soluble (E1) and apolar phenolic compounds (E2), and anthocyanins (E3)) was investigated against seven bacterial strains (Enterococcus faecium resistant to vancomycin (ERV), Escherichia coli O157:H7 EDL 933, Escherichia coli ATCC 25922, Listeria monocytogenes HPB 2812, Pseudomonas aeruginosa ATCC 15442, Salmonella Typhimurium SL1344, and Staphylococcus aureus ATCC 29213). Each cranberry sample was analyzed to determine the minimum inhibitory concentration (MIC) and the maximal tolerated concentration (MTC) at neutral pH. The results, reported in micro g phenol/mL, indicated that all the bacterial strains, both Gram-positive and Gram-negative, were selectively inhibited by the cranberry phenolic compounds. The extract rich in water-soluble phenolic compounds caused the most important growth inhibitions. The bacteria ERV, and to a lesser degree, P. aeruginosa, S. aureus and E. coli ATCC 25922, were the most sensitive to the antimicrobial activity of extract E1. The growth of P. aeruginosa and E. coli ATCC was also affected by the presence of the anthocyanin-rich cranberry extract E3, although the observed antibacterial effect was not as important as with extract E1. In general, L. monocytogenes, E. coli O157:H7 and S. Typhimurium were the most resistant to the antibacterial activity of the cranberry extracts. Within 30 min of exposure with pure neutralized cranberry juice, L. monocytogenes and ERV were completely inactivated.