Health Research

Health Research Library

Search

Miscellaneous: Review

Displaying 11 - 20 of 28

Oligosaccharides and complex carbohydrates: A new paradigm for cranberry Bioactivity

Posted
Authors
Coleman, C. M.; Ferreira, D
Journal
Molecules; 2020. 25(4).
Abstract

Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry

Dietary Berries, Insulin Resistance and Type 2 Diabetes: An Overview of Human Feeding Trials.

Posted
Authors
Calvano, A. Izuora, K. Oh, E. C. Ebersole, J. L. Lyons, T. J. Basu, A.
Journal
Food and Function; 2019. 10(10):6227-6243
Abstract

Dietary berries are a rich source of several nutrients and phytochemicals and in recent years, accumulating evidence suggests they can reduce risks of several chronic diseases, including type 2 diabetes (T2D). The objective of this review is to summarize and discuss the role of dietary berries (taken as fresh, frozen, or other processed forms) on insulin resistance and biomarkers of T2D in human feeding studies. Reported feeding trials involve different berries taken in different forms, and consequently differences in nutritional or polyphenol composition must be considered in their interpretation. Commonly consumed berries, especially cranberries, blueberries, raspberries and strawberries, ameliorate postprandial hyperglycemia and hyperinsulinemia in overweight or obese adults with insulin resistance, and in adults with the metabolic syndrome (MetS). In non-acute long-term studies, these berries either alone, or in combination with other functional foods or dietary interventions, can improve glycemic and lipid profiles, blood pressure and surrogate markers of atherosclerosis. Studies specifically in people with T2D are few, and more knowledge is needed. Nevertheless, existing evidence, although sparse, suggests that berries have an emerging role in dietary strategies for the prevention of diabetes and its complications in adults. Despite the beneficial effects of berries on diabetes prevention and management, they must be consumed as part of a healthy and balanced diet.

Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome.

Posted
Authors
Basu, A.
Journal
Nutrients; 2019. 11(9):1983
Abstract

Blood lipids are an important biomarker of cardiovascular health and disease. Among the lipid biomarkers that have been widely used to monitor and predict cardiovascular diseases (CVD), elevated LDL and low HDL cholesterol (C), as well as elevated triglyceride-rich lipoproteins, deserve special attention in their predictive abilities, and thus have been the targets of several therapeutic and dietary approaches to improving lipid profiles. Among natural foods and nutraceuticals, dietary berries are a rich source of nutrients, fiber, and various types of phytochemicals. Berries as whole fruits, juices, and purified extracts have been shown to lower total and LDL-C, and increase HDL-C in clinical studies in participants with elevated blood lipids, type 2 diabetes or metabolic syndrome. This short review aimed to further discuss the mechanisms and magnitude of the lipid-lowering effects of dietary berries, with emphasis on reported clinical studies. Based on the emerging evidence, colorful berry fruits may thus be included in a healthy diet for the prevention and management of CVD.

Cranberry Polyphenols: Natural Weapons Against Dental Caries.

Posted
Authors
Philip N; Walsh LJ.
Journal
Dentistry Journal. 7(1)
Abstract

Bioactive polyphenol components of cranberry (Vaccinium macrocarpon) are known to have virulence attenuating effects against several cariogenic virulence properties responsible for dental caries pathogenesis. In particular, cranberry A-type proanthocyanidins and flavonols have demonstrated potent inhibitory effects against cariogenic virulence targets such as bacterial acidogenicity, aciduricity, glucan synthesis, and hydrophobicity. Cranberry phenols have the ability to disrupt these cariogenic virulence properties without being bactericidal, a key quality essential for retaining the benefits of the symbiotic resident oral microbiome and preventing the emergence of resistant microbes. This review discusses the cariostatic mechanisms of specific cranberry phytochemicals and their potential use as therapeutic agents against cariogenic bacteria in the prevention and control of dental caries.

Effects of Blueberry and Cranberry Consumption on Type 2 Diabetes Glycemic Control: A Systematic Review.

Posted
Authors
Rocha DMUP; Caldas APS; da Silva BP; Hermsdorff HHM; Alfenas RCG.
Journal
Critical Reviews in Food Science & Nutrition. 59(11):1816-1828
Abstract

The metabolic effects of cranberry and blueberry consumption on glycemic control have been evaluated in vitro and in animal models as well as in human studies, although findings have not been systematically reviewed yet. Therefore, a systematic review was carried out of relevant randomized clinical trials (RCTs) in order to assess the effect of berries (blueberry and cranberry) consumption on type 2 diabetes (T2DM) glycemic control. Some evidences were also discussed on the anti-diabetic mechanisms exerted by berries polyphenols. Studies were identified by searching electronic databases: LILACS, PubMed/MEDLINE, Scopus, The Cochrane Library and Web of Science. Three authors independently searched and extracted RCTs in which the effect of berries (cranberry or blueberry) consumption on T2DM glycemic control was assessed. A total of 7 RCTs, involving 270 adults with type 2 diabetes were included. Despite the heterogeneity of the administration forms (in natura, dried, extract, preparations - juice), dosage, duration of the intervention and type of population of the studies involving these two berries some studies highlight the potential benefit of berries, especially of blueberry, on glucose metabolism in T2DM subjects. Daily cranberry juice (240 mL) consumption for 12 weeks and blueberry extract or powder supplementation (9.1 to 9.8 mg of anthocyanins, respectively) for 8 to 12 weeks showed a beneficial effect on glucose control in T2DM subjects. Those results indicate a promising use of these berries in T2DM management; although more studies are required to better understand the mechanisms involved.

Oral Health Benefits of Cranberry: A Review

Posted
Authors
B Alexander, S John
Journal
IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) Volume 18, Issue 1 Ver. 2 (January. 2019), PP 41-44
Abstract

Cranberry has a unique combination of phytochemicals which are used for treatment of various systemic diseases including oral diseases like caries,periodontitis and oral cancer. Many in vitro studies have outlined the potential health benefits of cranberry but in vivo studies are still inconclusive. Cranberry inhibit acid production, attachment and biofilm formation by Streptococcus mutans thereby being an effective anticaries agent. It also inhibits host inflammatory response and adherance of periodontal pathogens on tooth surfaces. Proanthocyanidins in cranberries demonstrate significant cancer prevention. The review aims to well into the potential benefits of cranberry in improving oral health as well as a peep into the still unexplored facets of natural medicaments in oral disease prevention.

American Cranberries and Health Benefits - An Evolving Story of 25 Years.

Posted
Authors
Zhao S; Liu H; Gu L.
Journal
Journal of the Science of Food & Agriculture. 10.1002/jsfa.8882 [doi]
Abstract

Cranberries contain various types of bioactive components. Scientists have been studying cranberries' beneficial effects on urinary tract health since the 20th century. In the 21st century, the protection provided by cranberry phytochemicals against cancer and vascular diseases has drawn more attention from researchers. Anthocyanins, procyanidins, and flavonols in cranberries were all documented to have potential effects on cancer prevention. The cardiometabolic effects of cranberries have been investigated in several clinical trials. It was found that cranberries positively affect atherosclerotic cholesterol profiles and that they reduced several cardiometabolic risk factors. Nowadays, growing evidence suggests other important roles of cranberries in maintaining digestive health. Cranberry juice or cranberries have been shown to inhibit the colonization of H. pylori in stomach, and protect against intestinal inflammation. For future research, clinical trials with improved study design are urgently needed to demonstrate cranberries' benefits on urinary tract health and cardiometabolic diseases. Hypothesis-driven studies using animals or cell culture are needed to elucidate the mechanisms of cranberries' effects on digestive health.

Dietary Polyphenols and Periodontitis-A Mini-Review of Literature.

Posted
Authors
Basu A; Masek E; Ebersole JL
Journal
Molecules. 23(7)
Abstract

Periodontitis, which is a chronic infection and disease of the periodontium, is a significant global health burden and is linked to other chronic health conditions such as diabetes and cardiovascular diseases. Dietary polyphenols present in a wide variety of plant-based foods, herbs, and botanicals have been shown to exert antimicrobial, anti-inflammatory, and reduced osteoclast and alveolar bone loss activities in animal models of periodontitis. Polyphenol-containing beverages and foods especially green tea and its active catechin epigallocatechin-3-gallate, cranberries, pomegranates, and fruit and vegetable extracts have reported bacteriostatic/bactericidal activity against microbial species such as P. gingivalis and shown total bacterial burden in clinical studies. These polyphenols also exhibit anti-inflammatory and antioxidant effects, which have the potential to impact various biological mechanisms for reducing the initiation and progression of periodontitis. The main objective of this mini-review is to focus on the mechanisms of action of dietary polyphenols in improving the pathophysiology underlying chronic inflammatory diseases like periodontitis based on pre-clinical and clinical models.

Effects of Blueberry and Cranberry Consumption on Type 2 Diabetes Glycemic Control: A Systematic Review.

Posted
Authors
Rocha DMUP; Caldas APS; da Silva BP; Hermsdorff HHM; Alfenas RCG.
Journal
Critical Reviews in Food Science & Nutrition. 1-13. 10.1080/10408398.2018.1430019 [doi]
Abstract

The metabolic effects of cranberry and blueberry consumption on glycemic control have been evaluated in vitro and in animal models as well as in human studies, although findings have not been systematically reviewed yet. Therefore, a systematic review was carried out of relevant randomized clinical trials (RCTs) in order to assess the effect of berries (blueberry and cranberry) consumption on type 2 diabetes (T2DM) glycemic control. Some evidences were also discussed on the anti-diabetic mechanisms exerted by berries polyphenols. Studies were identified by searching electronic databases: LILACS, PubMed/MEDLINE, Scopus, The Cochrane Library and Web of Science. Three authors independently searched and extracted RCTs in which the effect of berries (cranberry or blueberry) consumption on T2DM glycemic control was assessed. A total of 7 RCTs, involving 270 adults with type 2 diabetes were included. Despite the heterogeneity of the administration forms (in natura, dried, extract, preparations - juice), dosage, duration of the intervention and type of population of the studies involving these two berries some studies highlight the potential benefit of berries, especially of blueberry, on glucose metabolism in T2DM subjects. Daily cranberry juice (240 mL) consumption for 12 weeks and blueberry extract or powder supplementation (9.1 to 9.8 mg of anthocyanins, respectively) for 8 to 12 weeks showed a beneficial effect on glucose control in T2DM subjects. Those results indicate a promising use of these berries in T2DM management; although more studies are required to better understand the mechanisms involved.

Effects of Superfoods on Risk Factors of Metabolic Syndrome: a Systematic Review of Human Intervention Trials.

Posted
Authors
van den Driessche JJ; Plat J; Mensink RP.
Journal
Food & Function. 9(4):1944-1966
Abstract

Functional foods can be effective in the prevention of metabolic syndrome and subsequently the onset of cardiovascular diseases and type II diabetes mellitus. More recently, however, another term was introduced to describe foods with additional health benefits: "superfoods", for which, to date, no generally accepted definition exists. Nonetheless, their consumption might contribute to the prevention of metabolic syndrome, for example due to the presence of potentially bioactive compounds. This review provides an overview of controlled human intervention studies with foods described as "superfoods" and their effects on metabolic syndrome parameters. First, an Internet search was performed to identify foods described as superfoods. For these superfoods, controlled human intervention trials were identified until April 2017 investigating the effects of superfood consumption on metabolic syndrome parameters: waist circumference or BMI, blood pressure, or concentrations of HDL cholesterol, triacylglycerol or glucose. Seventeen superfoods were identified, including a total of 113 intervention trials: blueberries (8 studies), cranberries (8), goji berries (3), strawberries (7), chili peppers (3), garlic (21), ginger (10), chia seed (5), flaxseed (22), quinoa (1), cocoa (16), maca (1), spirulina (7), wheatgrass (1), acai berries (0), hemp seed (0) and bee pollen (0). Overall, only limited evidence was found for the effects of the foods described as superfoods on metabolic syndrome parameters, since results were not consistent or the number of controlled intervention trials was limited. The inconsistencies might have been related to intervention-related factors, such as duration or dose. Furthermore, conclusions may be different if other health benefits are considered.